Name Adv Geo -

5.6: Proving that a quadrilateral is a parallelogram

Objective

After studying this section, you will be able to

Prove that a quadrilateral is a parallelogram

PROVING A QUADRILATERAL IS A PARALLELOGRAM

Any one of the following methods might be used to prove that quadrilateral ABCD is a parallelogram.

- 1 If both pairs of opposite sides of a quadrilateral are parallel, then the quadrilateral is a parallelogram (reverse of the definition).
- 2 If both pairs of opposite sides of a quadrilateral are congruent, then the quadrilateral is a parallelogram (converse of a property). Both pars opposeds $\cong \Rightarrow \square$
- 3 If one pair of opposite sides of a quadrilateral are both parallel $/p_1 \leq ds \cong dt = dt$ and congruent, then the quadrilateral is a parallelogram.
- 4 If the diagonals of a quadrilateral bisect each other, then the diago bis each other $\Rightarrow \Box$ quadrilateral is a parallelogram (converse of a property).
- 5 If both pairs of opposite angles of a quadrilateral are congruent, then the quadrilateral is a parallelogram (converse of a property). By $\rho \rho / S \cong \gamma / S$

Class Examples

Problem 1

Given: ACDF is a □.

∠AFB ≅ ∠ECD

Prove: FBCE is a \square .

Proof

1 ACDF is a □.

 $2 \angle A \cong \angle D$

 $3 \overline{AF} \cong \overline{DC}$

 $4 \angle AFB \cong \angle ECD$

 $5 \triangle AFB \cong \triangle DCE$

 $6\overline{\text{FB}} \cong \overline{\text{EC}}$

 $7 \overline{AB} \cong \overline{ED}$

8 $\overline{AC} \cong \overline{FD}$

 $9\overline{BC} \cong \overline{FE}$

10 FBCE is a \square .

1 Given

2 ☐ ⇒ opp Ls ≅

3 □ ⇒ opp sds =

4 Given 5 ASA (234)

6 CPCTC

7CPCTC

8 \$\ ⇒ opp sds \ \

9 Subtract

 10 Both on opp sds $\stackrel{\sim}{=}$ \Rightarrow \square (629)

Problem 2

Given: △CAR is isosceles,

with base \overline{CR} .

 $\overline{AC} \cong \overline{BK}$,

 $\angle C \cong \angle K$

Prove: BARK is a □.

Proof

- 1 \triangle CAR is isos., with base \overline{CR} .
- $2 \overline{AC} \cong \overline{AR}$
- $3 \overline{AC} \simeq \overline{BK}$
- $4 \overline{AR} \cong \overline{BK}$
- $5 \angle C \cong \angle ARC$
- $6 \angle C \cong \angle K$
- $7 \angle ARC \cong \angle K$
- 8 ÀŔ∥BK
- 9 BARK is a □.

1 Given

- 2 180S ⇒ ≅ sdS
- 3 Given

4 transitive

- 5 XY → ΔA
- 6 GIVEN
- 7 hans.
- $8 con Ls \stackrel{\sim}{=} \Rightarrow //$
- 9 /propopodes = & // > ____

Problem 3

Given: Quadrilateral QUAD, with angles as shown

Show that QUAD is a \square .

both pairs Solution of opp is = > ___

$$\angle Q = \angle A$$

$$3x(x^2-5x) = 3x^3-15x^2$$

$$3x^3 - 15x^2 = 3x^3 - 15x^2$$

$$\begin{cases} \angle U = \angle D \\ (x^2)^5 = x'^0 \\ X'' = X'' \end{cases}$$

Name

Adv Geo -

5.6: Proving that a quadrilateral is a parallelogram

Homework

2 Given: $\angle XRV \cong \angle RST$, $\angle RSV \cong \angle TVS$

Conclusion: RSTV is a □.

12

13 _

4 Given: RKMP is a □.

 $\angle JRK \cong \angle PMO$

Prove: RJMO is a \square .

Supply each missing reason.

- 1 RKMP is a □.
- 2 RÓ | JM
- $3 \overline{RK} \cong \overline{PM}$
- $4 \angle RKM \simeq \angle MPR$
- 5 ∠JKR supp. ∠RKM
- 6 ∠OPM supp. ∠MPR
- $7 \angle JKR \cong \angle OPM$
- $8 \angle JRK \cong \angle PMO$
- 9 $\triangle JRK \cong \triangle OMP$
- 10 $\overline{JK} \cong \overline{PO}$
- 11 $\overline{RP} \cong \overline{KM}$
- 12 $\overline{RO} \cong \overline{IM}$
- 13 RJMO is a \square .

	R	Р	0
			7
J	K	M	

6 Given: $\overline{CD} \parallel \overline{AB}$,

 $\angle EDA \cong \angle CBF$

Prove: ABCD is a parallelogram.

9 JKMO is a \square . JM bisects \angle OJK and \angle OMK. OJ = x + 5, KM = y - 3, JK = 2x - 4

c Find the perimeter of OJKM.

11	Answer Always,	Sometimes,	or Never:	A quadrilateral is a
	parallelogram if			•

a Diagonals are congruent

b One pair of opposite sides are congruent and one pair of opposite sides are parallel

c Each pair of consecutive angles are supplementary

d All angles are right angles

11a
11b
11c
11d

13 Prove that the quadrilateral is a parallelogram.

AB II CD

ABCD is a 2

18 Given: $\overline{AF} \parallel \overline{EC}$, $\overline{AF} \cong \overline{EC}$, $\overline{BE} \cong \overline{FD}$

AF II EC

Prove ABCD is a \square .

Copy and complete the flow diagram for the proof. Be sure to list reasons 1–6.

 $\overline{\mathsf{AF}} \cong \overline{\mathsf{EC}}$

ΔAFB ≅ ΔCED

Name Adv Geo -

5.6: Proving that a quadrilateral is a parallelogram

CLASS WORK

1 For each quadrilateral QUAD, state the property or definition (if there is one) that proves that QUAD is a parallelogram.

Diago bis ea. other >

NONE

1E both propp sds //

=> 17

3 Given: ⊙O Conclusion: SMPR is a \square .

5 Show that PQRS is a parallelogram.

Slope PQ = AY = Sameslope = SlopeSR= O Samesigne:

PQ = |-10| + |2| = 12 Same SR = |-7| + |5| = 12

If one profsides is both = 2114hen II

times another. Find the measure of each angle.

10 The measure of one angle of a parallelogram is 40 more than 3

- G: = opp sides //
 - 11-jutts set supp
 - 4440 = 180
 - 4x= 140
 - X = 35
 - y=145

- 14 Given: RSOT is a □.
 - $\overline{\text{MS}} \cong \overline{\text{TP}}$
 - MOPR is a \square . \overline{M} Prove:
 - 1 RSOT is a □.
 - $2 \overline{MS} \cong \overline{TP}$
 - 3 RS | TO
 - $4 \angle RSM \cong \angle PTO$
 - $5 \overline{RS} \cong \overline{TO}$
 - $6 \triangle RSM \cong \triangle OTP$
 - $7 \overline{RM} \cong \overline{PO}$
 - $8 \angle 1 \cong \angle 2$
 - 9 RM || PO
 - (10) MOPR is a \square .

- - 1 Given
 - 2 Given
 - 3 □ ⇒ opp sds //
 - 4 11 -> alt ext LS =
 - 5 □ ⇒ opp sdo ≥

 - 6 SAS (2,4,5)
 - 7 CPCTC
 - 8 CPCTC
 - 9 alt int Ls = >11
- 10 one pr of sides ≥ & // ⇒ // (7 & 10)
- 17 Find the value of x.
 - 11 -> int Ls SST SUPP
 - : X=90 + 55