Ch 10 Take Home Portion of the Test

Each problem is worth 1 points, totaling 38 points. This part of the test is worth 40 points. Points earned will be reduced 10% every day it is late, regardless of reason. If you are sick, scan and email it

In problems 1–10, find the measure of each angle. Refer to the diagram and the information given.

AB is a diameter,

 $\overline{\mathrm{DA}}$ and $\overline{\mathrm{DC}}$ are tangents.

 $\widehat{AC} = 120^{\circ}, \widehat{AE} = 84^{\circ}, \widehat{EG} = 58^{\circ}$

4	/	1
1	L	Τ

2 12

3 \(\(\) \(\) \(\)

4 44

5 \(\(\) 5

6 46

7 L7

8 \(\(\) 8

9 49

10 *L* 10

	1	I
80	6)
	\searrow 3	G
	0 8 1	8 1 6 E

1

2 _____

3 _____

5_____

7

8_____

9_____

10_____

Part II (10 points)

In problems 11–20, decide whether each statement is True (T) or False (F).

11 Two concentric circles have exactly 1 common tangent.

11_____

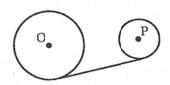
12 If a quadrilateral is inscribed in a circle, its opposite angles are supp.

12_____

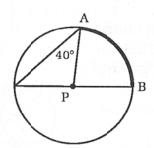
13 π is defined to be the ratio of the diameter of a \odot to its circumference.

13_____

Parallelogram ABCD is inscribed in a ⊙. Then m∠A must be 90.

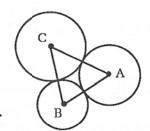

14_____

15 If an inscribed angle and a central angle intercept the same arc, they are \cong .

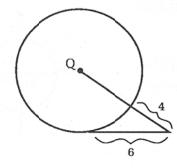

15 _____

The sides of an equilateral triangle inscribed in 16 a circle are closer to the center of the circle than the sides of a square inscribed in the circle. 16____ A line can intercept a circle either 0 times, 1 **17** time, or 2 times. No other possibilities exist. 17____ If a chord of a circle is twice as long as a radius 18 of that circle, the chord is a diameter. 18__ If two circles have 4 common tangents, then the 19 two circles intersect. 19___ 20 If a tangent segment and a secant segment are drawn to a circle from the same point, the external part of the secant segment is longer than the tangent segment. 20_ Part III (24 points) 21 \odot 0 $\angle OCB = 75^{\circ}$ Find the measure of $\angle A$. 22 A square with an area of 256 is inscribed in a circle. Find the radius of the circle. 22 Find, to the nearest 23 cm, the circumference of a circle in which an 80-cm chord is 9 cm from the center. 23_

O with radius 8
○P with radius 3
The length of the common external tangent seg. is 12.
Find the distance between the two circles.

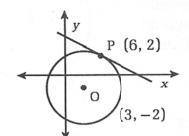

25 If a point is chosen at random on $\bigcirc P$, what is the probability that it is on arc AB?

24_____


25_____

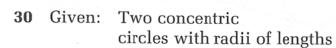
26 AC = 14
AB = 10
CB = 18
Find the length of the radius of the largest circle.

26_____

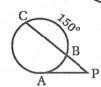

27 Find the length of the radius of ⊙Q.

27_____

Solve problems 28 and 29 by referring to the diagram.


Find the length of the radius of •O.

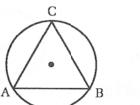
28_____


Find the slope of the tangent to ⊙O at P.

29_____

16 and 20.

Find the length of a chord of the larger circle that is tangent to the smaller circle.

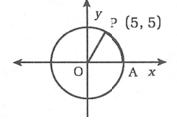


30_____

31 The ratio of the lengths of \widehat{AC} to \widehat{AB} is 3:2. Find the measure of $\angle P$.

31_____

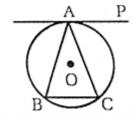
32 Chords \overline{AB} , \overline{BC} , and \overline{CA} are equidistant from the center of the circle. Find the measure of \widehat{AB} .


32____

Solve problems 33 and 34 by referring to the diagram.

Find the length of the radius of \odot O.

34 Find the length of \widehat{PA} , correct to the nearest tenth.


34_____

Complete the proof.

Given: $\triangle ABC$ is isos. with $\overline{AB} \cong \overline{AC}$.

PA tan to ⊙O

Prove: PA || BC

11000. 111 100	
\triangle ABC is isos. with $\overline{AB} \cong \overline{AC}$.	Given
$\angle B \cong \angle C$	35.
∠B ≅ ∠PAC	36.
∠C≅∠PAC	37
↔ ↔ PA BC	38.