NAME Ms. Kresovic Adv Geo – Period Fri., 25 Oct. 2012

7

Ch 3 Practice Test Answer Key

Cn	3 Practice Test Answer Key			
	Write A for Always, S for Sometimes, or N for Never in		e answe	r in this column
	the right-most column. (1 pt each, 4 points)			
1.	A triangle has 3 sides.	1.	Ą	
2.	If a median of a triangle is also an altitude of	2.	k 1	(it's isos)
	the triangle, the triangle is scalene.		<u> </u>	לכחבו בווא
3.	If an angle is selected at random from a	3.	9	
	triangle, the angle is obtuse.		9	
4.	If $A = (0, 0), B = (10, 0),$	4.		
	and AB is rotated 90° with			
	respect to the origin, then		0	
	B will rotate to the point		3	
	(0,-10).			
	A (0, 0) B (10, 0)			
	ν			
	* *			

5. (5. Complete statements 2 & 3 and reasons 2 – 4. (5 points)			
	Given: Two triangles, $\triangle ABC$ and $\triangle ABD$, standing on a desktop called f $\overline{BC} \cong \overline{BD}$ $\angle ABC \cong \angle ABD$ Prove: $\overline{AC} \cong \overline{AD}$ f C			
Statements		Reasons		
1.	Two triangles, $\triangle ABC$ and $\triangle ABD$, standing on a desktop called f $\overline{BC} \cong \overline{BD}$ $\triangle ABC \cong \triangle ABD$	1.	Given	
2.	AB & AB	2.	Reflexive	
3.	AABC ≅ AABD	3.	SAS	
4.	$\overline{AC} \cong \overline{AD}$	4.	CPCTC	

ADOG & ACAT
Name 3 prs ≥ segs
DO = CA
OG ~ AT
Do ECT

AMDG

6. Complete lines 2 – 4. (6 points)			
	Given: $\overline{EK} \cong \overline{HJ}$ $\overline{KG} \cong \overline{JF}$ $\overline{EF} \cong \overline{HG}$ Prove: $\angle E \cong \angle H$	11	F G H SSS SAS ASA HL
	Statements Reasons		
1.	EK ≅ HJ KG ≅ JF EF ≅ HG	1. Given	
2.	EG = HF	2.	Add
3.	DKEG Y DTHF	3.	SSS
4.	イモビレH	4.	CPCTC

NAME Ms. Kresovic Adv Geo - Period Fri., 25 Oct. 2012

Ch 3

Supply the missing reasons in the proof for problem 8. (5 points)

 $\angle ABF \cong \angle DCE$

 $\overline{\text{CH}} \cong \overline{\text{FB}}$

Prove: \triangle EHC is isosceles.

Statements

 $1 \angle EBC \cong \angle FCB$

- 2 LABF is supp. to LFBC. LDCE is supp. to LECB.
- 3 ∠ABF ≅ ∠DCE
- $4 \ \angle FBC \cong \angle ECB$
- $5 \overline{BC} \cong \overline{BC}$
 - $6 \triangle FBC \cong \triangle ECB$

 - $8 \overline{CH} \cong \overline{FB}$
 - 9 $\overline{EC} \cong \overline{CH}$
 - 10 △EHC is isosceles.

Reasons

- 2 If two angles form a straight angle, then they are supplementary.
- 3 Given

1 Given

- 4 SUPPS OF 2LS ARE 2

- 7 CPCTC
- 8 Given

Exercises 9 – 13 are 3 points each

9. The perimeter of \triangle BAG is 43.

AG = 16, AB = x + 4,

BG = 2x + 2

By solving for x, determine whether $\triangle BAG$ is scalene, isosceles, or equilateral.

2x = 21 x = 7

10.	The circle has its center at the origin and passes through (0, -5). Find the exact area of the circle.	10.
	$r=5$, $A=\pi r^2=\pi 25 \rightarrow$	251
11.	EC = 12, ET = $3x - 5$, IF $\cong \Delta s$ by SAS	11.
	VE = 10, $ER = x + 4$ $V = RE$	
	m/ PET = 3x + 10	8 1
	On the basis of the given, what must be the value of x ?	- 7
	Is △VEC ≅ △RET? 3x-5 CE =TE	
	2VEC = ZRET (Vert Lsare=) 12=3x-5	
	5x-2 = 3x+10 (2=13.:FALSE)	
	$\chi = 0$	
12.	In will a A A S N A A	12.
	AB = 3x + 1, AC = 2x + 5,	
	BC = x + y Solve for x.	
	If $y < 2.97$, then BC must be less	
	than what number?	6.97
	AB = $3x + 1$, AC = $2x + 5$, BC = $x + y$ Solve for x. If $y < 2.97$, then BC must be less than what number? AB = AC	6.97
	5×TT = 2~T IFY/)97 Then	
	x=4 BC (4+2.97)	
	362(47411)	
	Bc<6.97	
13.	ARGH = △ANE ⇒ ∠G = LN ⇒ m∠G = m∠N GH = 10 20142 = (Fw-65)	13.
	m/C = 2w + 2	•
	mLN = 17w - 658	W=44
	By solving for w , tell whether or not \overline{AN} is	331
	an altitude of △ANE.	AN 15
	IFAN alt then LN=90°=2G	an
	m2G = 2(40+4)+2 = 88+2=90°	altitude
		ulli iiuc
	:: YES, ANalt.	

NAME Ms. Kresovic Adv Geo – Period Fri., 25 Oct. 2012

Ch 3

14.	A triangle in which no two congruent is called a(n)	vo sides are triangle.	14. scalene
15.	In the diagram, if $\overline{BC} \cong \overline{C}$ then in order to prove $\triangle A$ $\cong \triangle EDC$ by HL, what add two sides must be congru	14. Scalene 15. Ac must be 2 to EC	
16.	In a triangle, what name is line segment drawn from midpoint of the opposite	a vertex to the	median
17.	If $\overline{FH} \cong \overline{FJ}$, name the base angles.	F	17. ZJ&ZH or ZFJH &ZFHJ
18.	If $\overline{FH} \cong \overline{FJ}$ and $\overline{FO} \cong \overline{FM}$, then what property justifies that $\overline{HO} \cong \overline{JM}$?	F M J	Subtraction