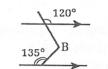
NAME

Adv Geo – Per DATE

Parallel Lines and Related Figures (chapter 5) Practice Test

Ms. Kresovic

The actual test will be tomorrow. There will be 2 always-sometimes-never problems, 7 "best description" of quadrilateral problems, 4 algebra problems with reasons, 4 fill-in proofs, 2 multiple-choice proofs. Again, geometry requires you to explain WHY something is or is not true.


Part I (5 points)

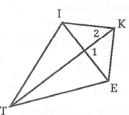
Iı

n problems 1–5, choose the correct answer.		
1	Which of the following are equiangular quadrilatera a parallelogram and rectangle b trapezoid and rhombus c square and rhombus d square and rectangle e none of these	ls?
2	If two parallel lines are cut by a transversal, then the bisectors of a pair of interior angles on the same side of the transversal are $\frac{?}{}$. a \parallel b \parallel c \perp d supplementary e complementary	2
3	What is the most descriptive name for quadrilateral MARY? a parallelogram b rectangle c rhombus d square e kite	and so atthe or at a second or
4	 Which of the following statements is not always true a The diagonals of an isosceles trapezoid are congruent. b The diagonals of a parallelogram bisect the angles of the parallelogram. c The diagonals of a kite divide it into four right triangles. d The diagonals of a rhombus divide it into four congruent right triangles. e The diagonals of a square divide it into four congruent isos. rt. triangles. 	e? 4
5	 Which of the following is not sufficient to prove a quadrilateral a paralleogram? a Show opposite sides parallel. b Show opposite angles congruent. c Show opposite sides congruent. d Show one pair of opposite sides congruent and one pair of opposite sides . e Show the diagonals bisect each other. 	5

Part II (17 points)

6 Write a valid inequality and find the restrictions on x.

 $(5x - 10)^{\circ}$

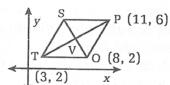

- 7 Find m∠B.
- 8 EASY is an isosceles trapezoid with bases $\overline{\text{EY}}$ and $\overline{\text{AS}}$. Find \overline{AS} .
- HARD is a rhombus with perimeter 52 and $\angle HAR = 60^{\circ}$.
- $(x + 60)^{\circ}$ $(4x)^{\circ}$ x - 3

- Find \overline{HY} .

10 KITE is a kite.

 $\angle 1 = 6x$ $\angle 2 = x + 20$

Find the measure of ∠IKE.



10.

Solve problems 11 and 12 by referring to the diagram and the information given.

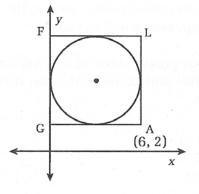
STOP is a rhombus.

Find the coordinates of V.

11

12

- Find the slope of \overline{SO} . 12
- 13 p | q $\angle 1 = 2x + 20$ $\angle 2 = 3x - 50$ Find the measure of $\angle 3$.



13.

Solve problems 14–16 by referring to the diagram and the information given.

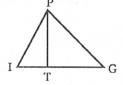
FLAG is a square with a circle inscribed within.

- 14 Find the coordinates of the center of the circle.
- 15 Find the circumference of the circle, correct to the nearest hundredth.
- Which has the greater perimeter, the circle or the square?

14_____

15 _____

16_____

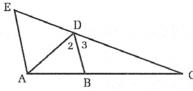

Part III (28 points)

In problem 17, write an indirect paragraph proof.

17 Given: $\triangle PIG$ is scalene.

 \overline{PT} is the altitude to \overline{IG} .

Prove: \overline{PT} is not the median to \overline{IG} .


17 __

In problems 18 and 19, write a two-column proof. Use a separate sheet of paper.

18 Given: $\overline{AE} \parallel \overline{BD}$

 $\angle 2 \cong \angle 3$

Prove: $\triangle EAD$ is isos.

Chapter 5 Parallel Lines and Related Figures

11 MB = CD / Addition

(8, 10) 12 ABCD is a CL / If one pair of opposite sides of a quad, are both = and |, then it is a Cl.

110 AE = CF / Semme as 7

ABCID is a CLOOK the appropriate sides of a quad are II, then it is a CD

LAEO = LCDB / \parallel Innes \Rightarrow alt int Ls = . 4 XB = CD / G BC = BC / Reflective = 6 \triangle ABD = \triangle CDB / SAS (4, 3, 5)

(7, 4) 11

16 square 10 70°

15 18.85

Φ,

8 21 14 (3, 5)

7 105°

Draw BID, / Two points determine a line.

Prome: ABCID is a C.

2 AB | CD / Given 4 AB = CD / Given

Q q (5 points) Part I

13 20° 6 6 < x < 38(17 points) 12 - 2Part III

Part III

(28 points)

3 ∠BEC ≈ ∠EAF / Given 5 Least two many two man 2 LEAD ≅ L2 / || lines ⇒ 17 Assume PT is the median to IG. Then IT \equiv TC. Since PT is the altitute IG, then L PTI and L PTG are congruent right L.s. Since PT \equiv PT, then isos. But $\triangle PIG$ is scalene. Thus, the assumption is false and $P\Gamma$ is not △PTI = △PTG by SAS. Then PI = PG by CPCTC, which makes △PIG 4.2 = 23/3 LE ≡ L3 / || lines ⇒ corr. Ls ≅. 18 1 AE | BD / Given the median to IG. alt. int. L.s ≡.

Given: AFCE is a \square .

 $\angle DAF \cong \angle BCE$ Prove: ABCD is a \square .

In problem 20, draw a diagram, state both what is given and the conclusion, and write the proof. Use a separate sheet of paper.

If one pair of opposite sides of a quadrilateral are both parallel and congruent, then it is a parallelogram.