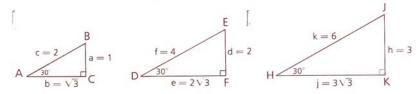
Objective

After studying this section, you will be able to

Understand three basic trigonometric relationships

This section presents the three basic trigonometric ratios *sine*, *co-sine*, and *tangent*. The concept of similar triangles and the Pythagorean Theorem can be used to develop the *trigonometry of right triangles*.

Consider the following 30°-60°-90° triangles.



Compare the length of the leg opposite the 30° angle with the length of the hypotenuse in each triangle.

In
$$\triangle ABC$$
, $\frac{a}{c} = \frac{1}{2} = 0.5$. In $\triangle DEF$, $\frac{d}{f} = \frac{2}{4} = 0.5$. In $\triangle HJK$, $\frac{h}{k} = \frac{3}{6} = 0.5$.

If you think about similar triangles, you will see that in every 30° - 60° - 90° triangle,

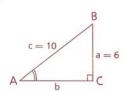
$$\frac{\text{leg opposite } 30^{\circ} \angle}{\text{hypotenuse}} = \frac{1}{2}$$

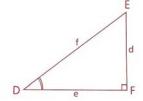
For each triangle shown, verify that $\frac{\text{leg adjacent to } 30^{\circ} \angle}{\text{hypotenuse}} = \frac{\sqrt{3}}{2}$.

For each triangle shown, find the ratio $\frac{\text{leg opposite } 30^{\circ} \angle}{\text{leg adjacent to } 30^{\circ} \angle}$

In \triangle ABC and \triangle DEF.

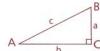
$$\frac{a}{c} = \frac{d}{f} = \frac{6}{10} = \frac{3}{5}$$





Engineers and scientists have found it convenient to formalize these relationships by naming the ratios of sides. You should memorize these three basic ratios.

Definition Three Trigonometric Ratios



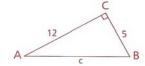
sine of
$$\angle A = \sin \angle A = \frac{\text{opposite leg}}{\text{hypotenuse}}$$
cosine of $\angle A = \cos \angle A = \frac{\text{adjacent leg}}{\text{hypotenuse}}$
tangent of $\angle A = \tan \angle A = \frac{\text{opposite leg}}{\text{adjacent leg}}$

Class Examples

Problem 1

Problem 3

Find: a cos ∠A b tan ∠B

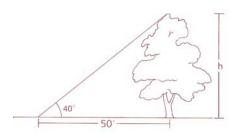


Problem 2 Find the three trigonometric ratios for $\angle A$ and $\angle B$.

 $\triangle ABC$ is an isosceles triangle as marked.

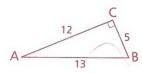
Use the fact that tan $40^{\circ} \approx 0.8391$ to find Problem 4 the height of the tree to the nearest foot.

Find sin ∠C.



Homework

- **5** If $\tan \angle M = \frac{3}{4}$, find $\cos \angle M$. (Hint: Start by drawing the triangle.)
- 6 Using the figure as marked, name each missing angle.

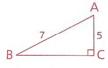


a
$$\frac{5}{12}$$
 = tan \angle ?

a
$$\frac{5}{12} = \tan \angle \frac{?}{13} = \cos \angle \frac{?}{}$$

c
$$\frac{5}{13} = \sin \angle$$
?

7 Find each quantity.



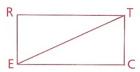
- a BC
- b sin ∠A
- c tan ∠B

8 Given: RECT is a rectangle.

$$ET = 26, RT = 24$$

Find: a sin ∠RET

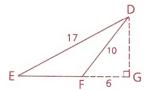
b cos ∠RET



Problem Set B

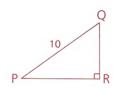
- 9 Using the given figures, find
 - a cos ∠A
 - b $\sin \angle E$
 - c sin ∠DFG



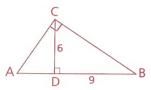


10 Use the fact that $\sin 40^{\circ} \approx 0.6428$ to find the height of the kite to the nearest meter.

- 11 a If $\tan \angle A = 1$, find $m \angle A$.
 - **b** If $\sin \angle P = 0.5$, find $m \angle P$.
- **12** Given: $\sin \angle P = \frac{3}{5}$, PQ = 10 Find: cos ∠P



- 13 Using the figure, find
 - a tan ∠ACD
 - **b** $\sin \angle A$



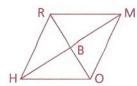
9.9: Introduction to Trigonometry

Problem Set B, continued

14 Given: RHOM is a rhombus. RO = 18, HM = 24

Find: a cos ∠BRM

b tan ∠BHO



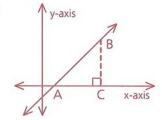
- **15** Given a trapezoid with sides 5, 10, 17, and 10, find the sine of one of the acute angles.
- 16 Given \triangle ABC with \angle C = 90°, indicate whether each statement is true Always (A), Sometimes (S), or Never (N).

 $a \sin \angle A = \cos \angle B$

b $\sin \angle A = \tan \angle A$

 $c \sin \angle A = \cos \angle$

- 17 If $\triangle EQU$ is equilateral and $\triangle RAT$ is a right triangle with RA = 2, RT = 1, and $\triangle T = 90^{\circ}$, show that $\sin \triangle E = \cos \triangle A$.
- 18 If the slope of \overrightarrow{AB} is $\frac{5}{8}$, find the tangent of $\angle BAC$.



Problem Set C

19 Use the definitions of the trigonometric ratios to verify the following relationships, given $\triangle ABC$ in which $\angle C = 90^{\circ}$.

 $a (\sin \angle A)^2 + (\cos \angle A)^2 = 1$

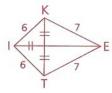
 $\mathbf{c} \frac{\sin \angle A}{\cos \angle A} = \tan \angle A$

 $b \frac{a}{\sin A} = \frac{b}{\sin A}$

d $\sin \angle A = \cos (90^{\circ} - \angle A)$

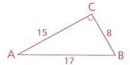
22 Given: KITE is a kite with sides as marked.

Find: tan ∠KEI



Classwork

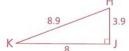
- 1 Find each ratio.
 - a sin ∠A
- **d** sin ∠B
- b cos ∠Ac tan ∠A
- e cos ∠B
- f tan ∠B



- 2 Find each ratio.
 - a sin 30°
- d $\sin 60^{\circ}$
- b cos 30°
- e cos 60°
- c tan 30°
- f tan 60°

- 3 Find each ratio.
 - a sin 45°
 - b cos 45°
 - c tan 45°

- 4 Find each ratio.
 - a cos ∠H
 - b tan ∠K



1a	
1 b	
1c	
1 d	
1e	
19	
2 a	
2 b	
2c	
2 d	
2e	
2 f	
3 a	
3b	
3c	
4a	
4b	