9.8: The Pythagorean Theorem and Space Figures

Ms. Kresovic W 19 Mar 14

Objective

After studying this section, you will be able to

Apply the Pythagorean Theorem to solid figures

Part One: Introduction

Rectangular Solid

Regular Square Pyramid

Many of the problems in this section will involve the two figures shown above.

In the rectangular solid:

ABFE is one of the 6 rectangular

faces BFGC

AB is one of the 12 edges

HB is one of the 4 diagonals of the solid. (The others are \overline{AG} , \overline{CE} , and \overline{DF} .)

diag of face: AC

In the regular square pyramid:

JKMO is a square, and it is called the **base**

P is the vertex top of mtn

PR is the altitude of the pyramid and is perpendicular to the base at its center.

PS is called a **slant height** and is

perpendicular to a side of the base.

Note A *cube* is a rectangular solid in which all edges are congruent.

Class Examples

Problem 1

The dimensions of a rectangular solid are 3, 5, and 7. Find the diagonal.

25+58 = HB

Solution

It does not matter which edges are given the lengths 3, 5, and 7. Let AD=3, AB=7, and HD=5, and use the Pythagorean Theorem twice.

In
$$\triangle$$
ABD,

$$3^{2} + 7^{2} = (DB)^{2}$$

 $9 + 49 = (DB)^{2}$
 $\sqrt{58} = DB$

The measure of the diagonal is $\sqrt{83}$.

In
$$\triangle$$
HDB, $5^2 + (\sqrt{58})$

$$5^{2} + (\sqrt{58})^{2} = (HB)^{2}$$

 $25 + 58 = (HB)^{2}$
 $\sqrt{83} = HB$

Problem 2

Given: The regular square pyramid shown, with altitude \overline{PR} and slant height \overline{PS} , perimeter of JKMO = 40, PK = 13

Find: a JK

b PS

c PR

Solution

a
$$JK = \frac{1}{4}(40) = 10$$

b The slant height of the pyramid is the \bot bis. of \overline{MK} , so PSK is a right \triangle .

$$(SK)^2 + (PS)^2 = (PK)^2$$

 $5^2 + (PS)^2 = 13^2$
 $PS = 12$

c The altitude of a regular pyramid is perpendicular to the base at its center. Thus, $RS = \frac{1}{2}(JK) = 5$, and PRS is a right \triangle .

$$(RS)^{2} + (PR)^{2} = (PS)^{2}$$

$$5^{2} + (PR)^{2} = 12^{2}$$

$$25 + (PR)^{2} = 144$$

$$PR = \sqrt{119}$$

9.8: The Pythagorean Theorem and Space Figures

- **4** Given: The rectangular solid shown, GC = 8, HG = 12, BC = 9
 - Find: a HB, a diagonal of the solid
 - b AG, another diagonal of the solid

SPECIALS
1. 3, 4, 5
2. 5, 12, 13
3. 7, 24, 25
4. 8, 15, 17
5. 30, 60, 90
x, x 13, 2x
6. 45, 45, 90
x, x, x/2

5 Given: The regular square pyramid shown, with altitude \overline{PY} and slant height \overline{PR} ,

$$ID = 14, PY = 24$$

Find: a AD

d The perimeter of base AMID

$$4 \approx sds$$
 $4 (14) = P$
 $4 (10+4) = 40+16 = 56$
 $14 \times 14 \times 14 \times 16 = 56$

e A diagonal of the base (not shown in the diagram)

Homework

1 Given: The rectangular solid shown, BY = 3, OB = 4, EY = 12

Find: a YO, a diagonal of face BOXY

b EO, a diagonal of the solid

3 Given: Regular square pyramid ABCDE, with slant height AF, altitude AG, and base BCDE; perimeter of BCDE = 40, $\angle AFG = 60^{\circ}$

Find: The altitude and the slant height

30

FG

ALL

90

Start

11 Given: OP as shown

Find: a The coordinates of point E (-3,0)

- **b** The area of sector EPG to the nearest tenth
- c The length of GE to the nearest

- a If face diagonal CH measures 17, edge GH measures 8, and edge FG measures 6, how long is diagonal \overline{AG} ?
- **b** If diagonal \overline{AG} measures 50, edge \overline{AE} measures 40, and edge EF measures 3, how long is edge \overline{FG} ?

$$\sqrt{2^2+3^2} = \sqrt{13} : AG = 5\sqrt{3}$$

- 14 PADIM is a regular square pyramid. Slant height PR measures 10, and the base diagonals measure $12\sqrt{2}$.
 - a Find ID. M

- **b** Find the altitude of the pyramid.
 - 8

c Find RD.

d Find PD (length of a lateral edge).

$$\frac{2(35)}{3^{2}+5^{2}}$$

NAME Adv Geo –

9.8: The Pythagorean Theorem and Space Figures

Ms. Kresovic W 19 Mar 14

Class Work

2 Find the diagonal of a rectangular solid whose dimensions are 3, 4, and 5.

6 Find the slant height of a regular square pyramid if the altitude is 12 and one of the sides of the square base is 10.

12 Given: Diagram as marked Find: AB (the length of \overline{AB})

$$AB = \sqrt{\Delta x^{2} + \Delta y^{2}}$$

$$\sqrt{(6 - -10)^{2} + (8 - 6)^{2}}$$

$$\sqrt{(6 - 2 + 8^{2})^{2}}$$

$$\sqrt{(6 - 10)^{2} + (8 - 6)^{2}}$$

$$\sqrt{(6 - 10)^{2} + (8 - 6)^{2}}$$

