9.8: The Pythagorean Theorem and Space Figures

Ms. Kresovic W 19 Mar 14

Objective

After studying this section, you will be able to

Apply the Pythagorean Theorem to solid figures

Part One: Introduction

Rectangular Solid

Many of the problems in this section will involve the two figures shown above.

In the rectangular solid:

ABFE is one of the 6 rectangular

faces flat Side

AB is one of the 12 edges was

HB is one of the 4 <u>diagonals</u> of the solid. (The others are AG, CE, and DF.)

In the regular square pyramid:

JKMO is a square, and it is called the **base**

P is the **vertex**

PR is the *altitude* of the pyramid and is perpendicular to the base at its center.

PS is called a **slant height** and is perpendicular to a side of the base.

Note A cube is a rectangular solid in which all edges are congruent.

Class Examples

Problem 1

The dimensions of a rectangular solid are 3, 5, and 7. Find the diagonal.

 $5^2 + (\sqrt{58})^2 = (HB)^2$

 $25 + 58 = (HB)^2$

 $\sqrt{83} = HB$

In △HDB,

Solution

It does not matter which edges are given the lengths 3, 5, and 7. Let AD=3, AB=7, and HD=5, and use the Pythagorean Theorem twice.

In
$$\triangle$$
ABD,
 $3^2 + 7^2 = (DB)^2$
 $9 + 49 = (DB)^2$
 $\sqrt{58} = DB$

The measure of the diagonal is $\sqrt{83}$.

Problem 2

Given: The regular square pyramid shown, with altitude \overline{PR} and slant height \overline{PS} , perimeter of JKMO = 40, PK = 13

Solution

a
$$JK = \frac{1}{4}(40) = 10$$

b The slant height of the pyramid is the \bot bis. of \overline{MK} , so PSK is a right \triangle .

$$(SK)^2 + (PS)^2 = (PK)^2$$

 $5^2 + (PS)^2 = 13^2$
 $PS = 12$

c The altitude of a regular pyramid is perpendicular to the base at its center. Thus, $RS = \frac{1}{2}(JK) = 5$, and PRS is a right \triangle .

$$(RS)^{2} + (PR)^{2} = (PS)^{2}$$

$$5^{2} + (PR)^{2} = 12^{2}$$

$$25 + (PR)^{2} = 144$$

$$PR = \sqrt{119}$$

9.8: The Pythagorean Theorem and Space Figures

- **4** Given: The rectangular solid shown, GC = 8, HG = 12, BC = 9
 - Find: a HB, a diagonal of the solid
 - **b** AG, another diagonal of the solid

HB = AG

15 Find the diagonal of a cube if each edge is 2.

 ${\bf 5}$ Given: The regular square pyramid shown, with altitude \overline{PY} and slant height $\overline{PR},$ ID = 14, PY = 24

$$ID = 14$$
, $PY = 24$

Find: a AD

c PR

d The perimeter of base AMID

e A diagonal of the base (not shown in the diagram)

Homework

1 Given: The rectangular solid shown, BY = 3, OB = 4, EY = 12

Find: a YO, a diagonal of face BOXY 5

b EO, a diagonal of the solid

3 Given: Regular square pyramid ABCDE, with slant height \overline{AF} , altitude \overline{AG} , and base BCDE; perimeter of BCDE = 40, $\angle AFG = 60^{\circ}$

Find: The altitude and the slant height

30 60 10 × ×13 2x 5 513 10 PG AG AF alt slant

11 Given: OP as shown

Find: a The coordinates of point E $(-3, \delta)$

- **b** The area of sector EPG to the nearest tenth
- c The length of GE to the nearesttenth

C Length Arc =
$$\frac{2}{360}$$
 T d
$$= \frac{90}{360} 6 \text{ T}$$

$$= \frac{3}{2} \text{ T}$$

y-axis G (0, 3)

C= 3

x-axis

- a If face diagonal \overline{CH} measures 17, edge \overline{GH} measures 8, and edge \overline{FG} measures 6, how long is diagonal \overline{AG} ?
- **b** If diagonal \overline{AG} measures 50, edge \overline{AE} measures 40, and edge \overline{EF} measures 3, how long is edge \overline{FG} ?

$$\triangle AEG = 10.15, AG$$

$$\underline{5}(2.3.-) \rightarrow \sqrt{2^2+3^2} = \underline{13} \rightarrow AG = 5\overline{13}$$

- 14 PADIM is a regular square pyramid. Slant height \overline{PR} measures 10, and the base diagonals measure $12\sqrt{2}$.
 - a Find ID.

45 45 90 X X X X IZ

b Find the altitude of the pyramid.

c Find RD.

d Find PD (length of a lateral edge).

$$2 (3, 5, 3)$$

$$3^{2} + 5^{3}$$

$$34$$

NAME Adv Geo –

9.8: The Pythagorean Theorem and Space Figures

Ms. Kresovic W 19 Mar 14

Class Work

2 Find the diagonal of a rectangular solid whose dimensions are 3, 4, and 5.

6 Find the slant height of a regular square pyramid if the altitude is 12 and one of the sides of the square base is 10.

12 Given: Diagram as marked Find: AB (the length of \overline{AB})

$$AB = \sqrt{3x^{2} + 4y^{2}}$$

$$\sqrt{(-0-6)^{2} + (0-8)^{2}}$$

$$\sqrt{(-16)^{2} + (-8)^{2}}$$

$$\sqrt{16^{2} + 8^{2}}$$

$$8(1, 2, -)$$

$$\sqrt{1^{2} + 2^{2}}$$

$$\sqrt{8}\sqrt{5}$$

