9.8: The Pythagorean Theorem and Space Figures

Ms. Kresovic W 19 Mar 14

Objective

After studying this section, you will be able to

Apply the Pythagorean Theorem to solid figures

Part One: Introduction

Rectangular Solid

Regular Square Pyramid

Many of the problems in this section will involve the two figures shown above.

In the rectangular solid:

ABFE is one of the 6 rectangular faces

AB is one of the 12 edges

 $\overline{\text{HB}}$ is one of the 4 **diagonals** of the solid. (The others are $\overline{\text{AG}}$, $\overline{\text{CE}}$, and $\overline{\text{DF}}$.)

In the regular square pyramid:

JKMO is a square, and it is called the **base**

P is the **vertex**

 \overline{PR} is the *altitude* of the pyramid and is perpendicular to the base at its center.

PS is called a *slant height* and is perpendicular to a side of the base.

Note A cube is a rectangular solid in which all edges are congruent.

Class Examples

Problem 1

The dimensions of a rectangular solid are 3, 5, and 7. Find the diagonal.

Solution

It does not matter which edges are given the lengths 3, 5, and 7. Let AD=3, AB=7, and HD=5, and use the Pythagorean Theorem twice.

In
$$\triangle ABD$$
,
 $3^2 + 7^2 = (DB)^2$
 $9 + 49 = (DB)^2$
 $\sqrt{58} = DB$

In
$$\triangle HDB$$
,
 $5^2 + (\sqrt{58})^2 = (HB)^2$
 $25 + 58 = (HB)^2$
 $\sqrt{83} = HB$

The measure of the diagonal is $\sqrt{83}$.

Problem 2

Given: The regular square pyramid shown, with altitude \overline{PR} and slant height \overline{PS} , perimeter of JKMO = 40, PK = 13

Solution

a
$$JK = \frac{1}{4}(40) = 10$$

b The slant height of the pyramid is the \bot bis. of \overline{MK} , so PSK is a right \triangle .

$$(SK)^2 + (PS)^2 = (PK)^2$$

 $5^2 + (PS)^2 = 13^2$
 $PS = 12$

c The altitude of a regular pyramid is perpendicular to the base at its center. Thus, $RS = \frac{1}{2}(JK) = 5$, and PRS is a right \triangle .

$$(RS)^{2} + (PR)^{2} = (PS)^{2}$$

$$5^{2} + (PR)^{2} = 12^{2}$$

$$25 + (PR)^{2} = 144$$

$$PR = \sqrt{119}$$

9.8: The Pythagorean Theorem and Space Figures

- 4 Given: The rectangular solid shown, GC = 8, HG = 12, BC = 9
 - Find: a HB, a diagonal of the solid
 - **b** AG, another diagonal of the solid

17

2 = 4 H 4.2 8

15 Find the diagonal of a cube if each edge is 2.

$$\Rightarrow 2^{2} + (212)^{2} = AB^{2}$$

 $4 + 8 = AB^{2}$
 $12 = AB^{2}$

$$4.3 = AB^2$$

$$2\sqrt{3} = AB$$

5 Given: The regular square pyramid shown, with altitude \overline{PY} and slant height \overline{PR} ,

$$ID = 14, PY = 24$$

Find: a AD

d The perimeter of base AMID 4(10+4) - 40 + 16 = 56

e A diagonal of the base (not shown in the diagram)

Homework

1 Given: The rectangular solid shown, BY = 3, OB = 4, EY = 12

Find: a YO, a diagonal of face BOXY 5

b EO, a diagonal of the solid

R T

3 Given: Regular square pyramid ABCDE, with slant height \overline{AF} , altitude \overline{AG} , and base BCDE; perimeter of BCDE = 40, $\angle AFG = 60^{\circ}$

Find: The altitude and the slant height

11 Given: ⊙P as shown

Find: a The coordinates of point E (-3,0)

- **b** The area of sector EPG to the nearest tenth
- The length of GE to the nearest

C Arclagth=
$$\frac{2}{360}$$
 C
$$= \frac{90}{360} = \frac{6}{4} \pi$$

$$= \frac{3}{3} \pi$$

- 13 ABCDEFGH is a rectangular solid.
 - a If face diagonal \overline{CH} measures 17, edge \overline{GH} measures 8, and edge \overline{FG} measures 6, how long is diagonal \overline{AG} ?
 - **b** If diagonal \overline{AG} measures 50, edge \overline{AE} measures 40, and edge \overline{EF} measures 3, how long is edge \overline{FG} ?

- 14 PADIM is a regular square pyramid. Slant height \overline{PR} measures 10, and the base diagonals measure $12\sqrt{2}$.
 - a Find ID.

45 45 90 x x x \bar{2} 12\bar{2}

c Find RD.

6

d Find PD (length of a lateral edge).

$$10^2 + 6^2 = PD^2$$

$$2\sqrt{3^2+5^2}$$

 AMDG

NAME Adv Geo –

9.8: The Pythagorean Theorem and Space Figures

Ms. Kresovic W 19 Mar 14

Class Work

 ${f 2}$ Find the diagonal of a rectangular solid whose dimensions are 3, 4, and 5.

6 Find the slant height of a regular square pyramid if the altitude is 12 and one of the sides of the square base is 10.

12 Given: Diagram as marked Find: AB (the length of \overline{AB})

$$\sqrt{\Delta \chi^2 + \Delta \gamma^2}$$

$$\sqrt{16^2 + 8^2}$$

