Name Adv Geo -

Special Right Triangles (9.7)

Ms. Kresovic 18 March 2014

Objectives

After studying this section, you will be able to

- Identify the ratio of side lengths in a 30°-60°-90° triangle
- Identify the ratio of side lengths in a 45°-45°-90° triangle

Theorem 72 In a triangle whose angles have the measures 30, 60, and 90, the lengths of the sides opposite these angles can be represented by x, $x\sqrt{3}$, and 2x respectively. (30°-60°-90°-Triangle Theorem)

Given: $\triangle ABC$ is equilateral.

CD bisects ∠ACB.

Prove: AD:DC:AC = $x:x\sqrt{3}:2x$

Proof: Since \triangle ABC is equilateral, \angle ACD = 30°, \angle A = 60°,

 $\angle ADC = 90^{\circ}$, and $AD = \frac{1}{2}(AC)$. By the Pythagorean Theorem, in $\triangle ADC$,

$$x^2 + (DC)^2 = (2x)^2$$

The smallest side is **ALWAYS** opposite the smallest angle.

The largest side is ALWAYS opposite the largest angle.

work through the rest now.

Theorem 73 In a triangle whose angles have the measures 45, 45, and 90, the lengths of the sides opposite these angles can be represented by x, x, and $x\sqrt{2}$, respectively. (45°-45°-90°-Triangle Theorem)

Given: $\triangle ACB$, with $\angle A = 45^{\circ}$ and $\angle B = 45^{\circ}$.

Prove: AC:CB:AB = $x:x:x\sqrt{2}$

The proof of this theorem is left to you.

You will see $30^{\circ}\text{-}60^{\circ}\text{-}90^{\circ}$ and $45^{\circ}\text{-}45^{\circ}\text{-}90^{\circ}$ triangles frequently in this book and in other mathematics courses. Their ratios are worth memorizing now.

Six Common Families of Right Triangles	
$30^{\circ}-60^{\circ}-90^{\circ} \Leftrightarrow (x, x\sqrt{3}, 2x)$ $45^{\circ}-45^{\circ}-90^{\circ} \Leftrightarrow (x, x, x\sqrt{2})$	(5, 12, 13)
$45^{\circ}-45^{\circ}-90^{\circ} \Leftrightarrow (x, x, x\sqrt{2})$	(7, 24, 25)
(3, 4, 5)	(8, 15, 17)

Class Examples

Problem 1

Type: Hypotenuse (2x) known Find BC and AC.

Problem 3

Type: Leg (x) known MOPR is a square. Find MP.

Problem 2

Type: Longer leg $(x\sqrt{3})$ known Find JK and HK.

Problem 4

Type: Hypotenuse $(x\sqrt{2})$ known Find ST and TV.

Special Right Triangles (9.7)

Homework

1 Find the two missing sides in each 30°-60°-90° triangle. Try to do the calculations in your head.

a 30°

- 1a _____
- 1d _____
- 1b _____
- 1e _____
- 1c _____
 - **2** Find the two missing sides of each triangle. (Hint: These are a bit harder, and you may want to put x, $x\sqrt{3}$, and 2x on the proper sides as shown in the sample problems.)

a

b

C

d

- 2a _____
- 2c_____
- 2b_____
- 2d _____
- 3 Solve for the variable in each of these equilateral triangles.

a

b

C

3a

3b

3с

4 Solve for the variable in each of these 45°-45°-90° tria	angles.
--	---------

a

b

C

d

4a

4c_____

4b_____

4d _____

5 The perimeter of a square is 44. Find the length of a diagonal.

6 Find the length of the diagonal of the rectangle.

7 Find the altitude of an equilateral triangle if a side is 6 mm long.

8 Given: $\overline{AC} \perp \overline{BC}$, $\overline{CD} \perp \overline{AB}$, $\angle B = 30^{\circ}$, $BC = 8\sqrt{3}$

9 Given: TRWX is a kite $(\overline{TR}\cong \overline{WR} \text{ and } \overline{TX}\cong \overline{XW})$. RY = 5, TW = 10, YX = 12

Find: a TR

b WX

10 a Find the ratio of the longer leg to the hypotenuse in a 30°-60°-90° triangle.

10

b Find the ratio of one of the legs to the hypotenuse in a 45°-45°-90° triangle.

12 a Find the coordinates of B.

b Find the slope of OB.

 ${f c}$ Find $\frac{AB}{OA}$. (In a trigonometry class, this ratio is called the tangent of angle BOA.)

