Special Right Triangles (9.7)

Name Student Adv Geo - 8

Objectives

After studying this section, you will be able to

- Identify the ratio of side lengths in a 30°-60°-90° triangle
- Identify the ratio of side lengths in a 45°-45°-90° triangle

Theorem 72 In a triangle whose angles have the measures 30, 60, and 90, the lengths of the sides opposite these angles can be represented by x, $x\sqrt{3}$, and 2x respectively. (30°-60°-90°-Triangle Theorem)

Given: $\triangle ABC$ is equilateral.

CD bisects ∠ACB.

Prove: AD:DC:AC = $x:x\sqrt{3}:2x$

Proof: Since \triangle ABC is equilateral, \angle ACD = 30°, \angle A = 60°, \angle ADC = 90°, and AD = $\frac{1}{2}$ (AC).

By the Pythagorean Theorem, in \triangle ADC,

$$x^{2} + (DC)^{2} = (2x)^{2}$$
 $x^{2} + DC^{2} = 4x^{2}$
 $-x^{2}$
 $DC^{2} = 3x^{2}$
 $DC = \sqrt{3} \cdot x \text{ or } x\sqrt{3}$

work through the rest now.

$$x^{2}+x^{2} = hyp^{2}$$

$$\int 2x^{2} = \int hyp^{2}$$

Theorem 73 In a triangle whose angles have the measures 45, 45, and 90, the lengths of the sides opposite these angles can be represented by x, x, and $x\sqrt{2}$, respectively. (45°-45°-90°-Triangle Theorem)

Given: $\triangle ACB$, with $\angle A = 45^{\circ}$ and $\angle B = 45^{\circ}$.

Prove: AC:CB:AB = $x:x:x\sqrt{2}$

The proof of this theorem is left to you.

Ms. Kresovic

18 March 2014

You will see 30° - 60° - 90° and 45° - 45° - 90° triangles frequently in this book and in other mathematics courses. Their ratios are worth memorizing now.

$\stackrel{*}{\sim} 30^{\circ}-60^{\circ}-90^{\circ} \iff (x, x\sqrt{3}, 2x)$	(5, 12, 13)
	(7, 24, 25)
(3, 4, 5)	(8, 15, 17)

Class Examples

Problem 1

Type: Hypotenuse (2x) known

Find BC and AC.

30	60	90
X	× 13	2x
5	513	10
BC	AC	AB

1f 2x=10

x = 5

45 .	- 45	-90
X	×	ХIZ
0	a (9/2

Type: Leg (x) known MOPR is a square.

Find MP.

Problem 3

Problem 2

Type: Longer $leg(x\sqrt{3})$ known Find JK and HK.

If
$$x\sqrt{3} = 6$$
 mult $\sqrt{3} \times \sqrt{3} = 6\sqrt{3}$
Advide $\sqrt{3}$ $\sqrt{3}$

Type: Hypotenuse $(x\sqrt{2})$ known Problem 4 Find ST and TV.

$$X = \frac{4}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2}}$$

Special Right Triangles (9.7)

Homework

1 Find the two missing sides in each 30° - 60° - 90° triangle. Try to do the calculations in your head.

1a
$$30,60,90 \Rightarrow 7,713 = 14$$

1b $10,1013,20$

- 1d _____
- 1c _____(5), 5√3, (10)
- **2** Find the two missing sides of each triangle. (Hint: These are a bit harder, and you may want to put x, $x\sqrt{3}$, and 2x on the proper sides as shown in the sample problems.)

x13= 6 x=6 13 x=613

2a <u>(</u>	213	6,45	3)	
2b _	15	1513	15	

- 2c_____
- 2d ______
- 3 Solve for the variable in each of these equilateral triangles.

a

3a

3b

$$x = \frac{21}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}}$$

s:side

b $|f|_{45^{\circ}} |f|_{5} = \frac{1}{\sqrt{2}} |f|_{5} = \frac{1$

4c_____

4d _____

5 The perimeter of a square is 44. Find the length of a diagonal.

6 Find the length of the diagonal of the rectangle.

7 Find the altitude of an equilateral triangle if a side is 6 mm long.

30 60 90 × x13 2x 3 3/3 6 8 Given: $\overline{AC} \perp \overline{BC}$, $\overline{CD} \perp \overline{AB}$, $\angle B = 30^{\circ}$, $BC = 8\sqrt{3}$

9 Given: TRWX is a kite $(\overline{TR} \cong \overline{WR} \text{ and } \overline{TX} \cong \overline{XW})$.

RY = 5, TW = 10, YX = 12 Find: **a** TR \rightarrow 45 - 46 - 90 \rightarrow 5 $\sqrt{2}$

5/2

Find: a TR→45-46-96 b WX → 13

TEST ALSO, TRIG

10 a Find the ratio of the longer leg to the hypotenuse in a 30°-60°-90° triangle.

10

b Find the ratio of one of the legs to the hypotenuse in a 45°-45°-90° triangle.

12 a Find the coordinates of B.

b Find the slope of OB.

c Find AB OA. (In a trigonometry class, this ratio is called the tangent of angle BOA.)

 $+an 60^{\circ} = \sqrt{3}$

🕆 y-axis 💂 B 🕻 1, 🛐