

Objectives

After studying this section, you will be able to

- Identify the ratio of side lengths in a 30°-60°-90° triangle
- Identify the ratio of side lengths in a 45°-45°-90° triangle

Theorem 72 In a triangle whose angles have the measures 30, 60, and 90, the lengths of the sides opposite these angles can be represented by x, $x\sqrt{3}$, and 2x respectively. (30°-60°-90°-Triangle Theorem)

Given: $\triangle ABC$ is equilateral.

CD bisects ∠ACB.

Prove: AD:DC:AC = $x:x\sqrt{3}:2x$

Proof: Since $\triangle ABC$ is equilateral, $\angle ACD = 30^{\circ}$, $\angle A = 60^{\circ}$, $\angle ADC = 90^{\circ}$, and $AD = \frac{1}{2}(AC)$.

By the Pythagorean Theorem, in △ADC,

$$x^{2} + (DC)^{2} = (2x)^{2}$$

$$x^{2} + DC^{2} = 4x^{2}$$

$$-\chi^{2}$$

$$DC^{2} = 3x^{2}$$

$$x^{2} + x^{2} = hyp^{2}$$

$$\sqrt{2}x^{2} = hyp^{2}$$

Special Right Triangles (9.7)

The smallest side is **ALWAYS** opposite the smallest angle.

The largest side is ALWAYS opposite the largest angle.

work through the rest now.

Given: $\triangle ACB$, with $\angle A = 45^{\circ}$ and $\angle B = 45^{\circ}$. Prove: AC:CB:AB = $x:x:x\sqrt{2}$

The proof of this theorem is left to you.

You will see 30° - 60° - 90° and 45° - 45° - 90° triangles frequently in this book and in other mathematics courses. Their ratios are worth memorizing now.

Six Common Families of Right Triangles		
4	$\begin{array}{c} 30^{\circ}-60^{\circ}-90^{\circ} \iff (x, x\sqrt{3}, 2x) \\ 45^{\circ}-45^{\circ}-90^{\circ} \iff (x, x, x\sqrt{2}) \end{array}$	(5, 12, 13) (7, 24, 25)
	(3, 4, 5)	(8, 15, 17)

Class Examples

Problem 1 Type: Hypotenuse (2x) known Find BC and AC.

IF 2x = 10

x = 5

$$30 60 90$$
 $x x 13$
 $5 5 10$
 $30 40 40$

Problem 2

Find JK and HK.

$$30 - 60 - 90$$
 $x = 13$
 $20 - 60 - 90$
 $x = 16$
 $x = 1$

Type: Longer $leg(x\sqrt{3})$ known

Problem 3 Type: Leg (x) known MOPR is a square. Find MP.

Problem 4 Type: Hypotenuse $(x\sqrt{2})$ known Find ST and TV.

If
$$x\sqrt{2} = \frac{4}{\sqrt{2}}$$

$$x = \frac{4}{\sqrt{2}} \sqrt{2}$$

$$x = \frac{4}{\sqrt{2}} \sqrt{2}$$

$$x = \frac{4}{\sqrt{2}} \sqrt{2}$$

$$x = 2\sqrt{2}$$

$$x = 2\sqrt{2}$$

Special Right Triangles (9.7)

Homework

1 Find the two missing sides in each 30°-60°-90° triangle. Try to do the calculations in your head.

1d _

2 Find the two missing sides of each triangle. (Hint: These are a bit harder, and you may want to put x, $x\sqrt{3}$, and 2x on the proper sides as shown in the sample problems.)

2a 2b

2c

2d

3 Solve for the variable in each of these equilateral triangles.

60 3a -90 30 $x \sqrt{3}$ 2x 4

