Name Adv Geo -

Objectives

After studying this section, you will be able to

- Identify the ratio of side lengths in a 30°-60°-90° triangle
- Identify the ratio of side lengths in a 45°-45°-90° triangle

Theorem 72 In a triangle whose angles have the measures 30, 60, and 90, the lengths of the sides opposite these angles can be represented by x, $x\sqrt{3}$, and 2x respectively. (30°-60°-90°-Triangle Theorem)

Given: $\triangle ABC$ is equilateral.

CD bisects ∠ACB.

Prove: AD:DC:AC = $x:x\sqrt{3}:2x$

Proof: Since $\triangle ABC$ is equilateral, $\angle ACD = 30^{\circ}$, $\angle A = 60^{\circ}$, $\angle ADC = 90^{\circ}$, and $AD = \frac{1}{2}(AC)$.

By the Pythagorean Theorem, in △ADC,

$$x^2 + (DC)^2 = (2x)^2$$

$$x^2 + DC^2 = 4x^2$$

$$DC^2 = 3x^2$$

AD: DC: AC X X/3 2x

45°: 45°: 90° x : x : x√2

$$x^2 + x^2 = hyp^2$$

 $2x^2 = hyp^2$

Special Right Triangles (9.7)

The smallest side is **ALWAYS** opposite the smallest angle.

The largest side is ALWAYS opposite the largest angle.

work through the rest now.

Ms. Kresovic

18 March 2014

In a triangle whose angles have the measures 45, Theorem 73 45, and 90, the lengths of the sides opposite these angles can be represented by x, x, and $x\sqrt{2}$, respectively. (45°-45°-90°-Triangle Theorem)

Given: \triangle ACB, with \angle A = 45° and \angle B = 45°.

Prove: AC:CB:AB = $x:x:x\sqrt{2}$

The proof of this theorem is left to you.

You will see 30° - 60° - 90° and 45° - 45° - 90° triangles frequently in this book and in other mathematics courses. Their ratios are worth memorizing now.

Six Common Families of Right Triangles \star 30°,60°,90° \Leftrightarrow $(x, x\sqrt{3}, 2x)$ (5, 12, 13) 45° 45° $90^{\circ} \Leftrightarrow (x, x, x\sqrt{2})$ (7, 24, 25)(3, 4, 5)(8, 15, 17)

KESSENTIAL FOR TRIG!

Class Examples

Problem 1 Type: Hypotenuse (2x) known Find BC and AC.

- 30 : : 90 60
- x√3 : 2x
- 5 10
- AB BC

Type: Longer $leg(x\sqrt{3})$ known Problem 2 Find JK and HK.

- 90 36: 60:

IF x13 = 6

- x 3 X
- 2x
- 213
- 413
- KJ
- It J
- HK
- IF x \(\bar{3} \cdot \bar{\bar{3}} = 6 \cdot \bar{\bar{3}} \)
 - x = 2 \(\bar{3} \)

Problem 3 Type: Leg (x) known MOPR is a square. Find MP.

45 : 45:

X

- - X
- OP MO
- MP

90

x 2

Type: Hypotenuse $(x\sqrt{2})$ known Problem 4 Find ST and TV.

- 90 45 XVZ X ٧S

4

Special Right Triangles (9.7)

Homework

1 Find the two missing sides in each 30°-60°-90° triangle. Try to do the calculations in your head.

1d _____

1e _____

- 1a 7 & 73
- 10/3 &20
- 5 & 10
- 2 Find the two missing sides of each triangle. (Hint: These are a bit harder, and you may want to put x, $x\sqrt{3}$, and 2x on the proper sides as shown in the sample problems.)

& 4/3

90

2x

- 2d _____
- **3** Solve for the variable in each of these equilateral triangles.

60:

8/2 4a

4c

4/2 4b

4d

5 The perimeter of a square is 44. Find the length of a diagonal. side = 11

6 Find the length of the diagonal of the rectangle.

7 Find the altitude of an equilateral triangle if a side is 6 mm long.

90

8 Given: $\overline{AC} \perp \overline{BC}$, $\overline{CD} \perp \overline{AB}$, $\angle B = 30^{\circ}, BC = 8\sqrt{3}$

9 Given: TRWX is a kite $(\overline{TR} \cong \overline{WR} \text{ and } \overline{TX} \cong \overline{XW})$. RY = 5, TW = 10, YX = 12

Find: a TR → 45,45,90 → x, x, x/2 → 5/2

10 a Find the ratio of the longer leg to the hypotenuse in a 30°-60°-90° triangle.

- **b** Find the ratio of one of the legs to the hypotenuse in a 45°-45°-90° triangle.

$$\frac{\text{leg}}{\text{hyp}} = \frac{X}{X\sqrt{2}} = \frac{1}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{2}}{2}$$

- a Find the coordinates of B.
 - **b** Find the slope of OB.
 - **c** Find $\frac{AB}{OA}$. (In a trigonometry class, this ratio is called the tangent of angle

