9.4: The Pythagorean Theorem, Geometry's Most Elegant Theorem

Ms. Kresovic

Date

Objective: After studying this section, you will be able to apply the Pythagorean Theorem and its converse.

Prior knowledge:

- Triangle Inequality Theorem (chapter 1): The third side of a triangle must be
 - o Smaller than the sum of the other two sides, and
 - o Larger than the difference.
- Used the Pythagorean Theorem before.

The square of the measure of the hypotenuse of a Theorem 69 right triangle is equal to the sum of the squares of the measures of the legs. (Pythagorean Theorem)

Given: $\triangle ACB$ is a right \triangle with right $\angle ACB$.

Prove: $a^2 + b^2 = c^2$

Proof:

1 \angle ACB is a right \angle .

2 Draw $\overline{\text{CD}} \perp \text{to } \overline{\text{AB}}$.

 $3 \overline{CD}$ is an altitude.

$$4 a^2 = (c - x)c$$

$$5 a^2 = c^2 - cx$$

$$6 b^2 = xc$$

$$7 a^2 + b^2 = c^2 - cx + cx$$

$$a^2 + b^2 - c^2$$

- 1 Given
- 2 From a point outside a line, only one \perp can be drawn to the line.
- 3 A segment drawn from a vertex of a $\triangle \perp$ to the opposite side is an altitude.
- 4 In a right △ with an altitude drawn to the hypotenuse, $(leg)^2 = (adjacent seg.) (hypot.).$
- 5 Distributive Property
- 6 Same as 4
- 7 Addition Property

Theorem 70 If the square of the measure of one side of a triangle equals the sum of the squares of the measures of the other two sides, then the angle opposite the longest side is a right angle.

If $a^2 + b^2 = c^2$, then $\triangle ACB$ is a right \triangle and $\angle C$ is the right \angle .

If, in the diagram above, we increased c while keeping a and b the same, ∠C would become larger. Try it. Thus, a valuable extension of Theorem 70 can be stated:

If c is the length of the longest side of a triangle, and

- $a^2 + b^2 > c^2$, then the triangle is acute $a^2 + b^2 = c^2$, then the triangle is right $a^2 + b^2 < c^2$, then the triangle is obtuse

Class Examples

Problem 2 Find the perimeter of the rectangle shown.

Problem 3 Find the perimeter of a rhombus with diagonals of 6 and 10.

Problem 4 Nadia skipped 3 m north, 2 m east, 4 m north, 13 m east, and 1 m north. How far is Nadia from where she started?

Problem 5 Find the altitude of an isosceles trapezoid whose sides have lengths of 10, 30, 10, and 20.

Problem 7 Solve for *x* in the partial spiral.

2 Find the length of the diagonal of a square with perimeter 12 cm.

- **4** Find the perimeter of a rectangle whose diagonal is 17 mm long and whose base is 15 mm long.
- **6** \overline{PM} is an altitude of equilateral triangle PKO. If PK = 4, find PM.
- 8 How far is the foot of the ladder from the wall?

- **9** $\overline{AC} \parallel y$ -axis and $\overline{CB} \parallel x$ -axis.
 - a Find the coordinates of C.
 - **b** Find AC and CB.
 - c Find AB.
 - **d** Is AB = $\sqrt{(8-2)^2 + (11-3)^2}$?

10 Use the method suggested by part **d** of problem 9 to find PQ.

b If
$$CD = 8$$
 and $DB = 6$, find CB .

$$c$$
 If BC = 8 and BD = 2, find AB.

d If
$$AC = 21$$
 and $AB = 29$, find CB .

14 Find the altitude (length of a segment perpendicular to both bases) of the isosceles trapezoid shown.

16 Given: Diagram as shown

Find: CD

22 Classify the triangles.

24 Find the perimeter of $\triangle DBC$.

26 The perimeter of an isosceles triangle is 32, and the length of the altitude to its base is 8. Find the length of a leg.

Name Adv Geo –

9.4: The Pythagorean Theorem, Geometry's Most Elegant Theorem

Date

Homework

1. Solve for the third side. Let x & y be the legs of a right triangle, and r be the hypotenuse.

1.	Solve for the third side. Let x & y be the legs of a right triangle, and r be the hypotenuse.				
	X	у	r	work	
a.	4	5			r x
b.	15		17		<u></u>
C.		9	15		
d.	12		13		
e.	5	5√3			
f.	5		√29		
g.	2√5		√38		

 ${\bf 3}\,$ Find the perimeter of a rhombus with diagonals 12 km and 16 km.

5 Given: \overline{JG} is the altitude to base \overline{FH} of isosceles triangle JFH.

$$FJ = 15, FH = 24$$

Find: JG

7 Find the missing length in the trapezoid.

11 Find the missing length in terms of the variable(s) provided.

b
$$AC = 2$$
, $BC = x$, $AB =$?

c
$$AC = 3a$$
, $BC = 4a$, $AB = __?$

d
$$AB = 13c$$
, $AC = 5c$, $BC = _?$

13 Al Capone walked 2 km north, 6 km west, 4 km north, and 2 km west. If Big Al decides to "go straight," how far must he walk across the fields to his starting point?

15 A piece broke off rectangle ABDF, leaving trapezoid ACDF. If BD = 16, BC = 7, FD = 24, and E is the midpoint of $\overline{\text{FD}}$, what is the perimeter of \triangle ACE?

17 Solve for x in the partial spiral to the right.

- 19 Woody Woodpecker pecked at a 17-m wooden pole until it cracked and the upper part fell, with the top hitting the ground 10 m from the foot of the pole. Since the upper part had not completely broken off, Woody pecked away where the pole had cracked. How far was Woody above the ground?
- 21 The lengths of the diagonals of a rhombus are in the ratio 2:1. If the perimeter of the rhombus is 20, find the sum of the lengths of the diagonals.

Date

- **23** George and Diane bought a plot of land along Richard Road with the dimensions shown.
 - a Find the area of the plot.
 - **b** Find, to the nearest meter, the length of frontage on Richard Road.

- 25 a Find HF.
 - **b** Is \triangle EHF similar to \triangle HGF?

27 A ladder 25 ft long (JO) is leaning against a wall, reaching a point 20 ft above the ground (MO). The ladder is then moved so that JK = 2(PO). Find KM.

- **31** Quadrilateral QUAD has vertices at Q = (-7, 1), U = (1, 16), A = (9, 10), and D = (1, -5).
 - **a** Plot the figure and indicate what type of quadrilateral QUAD is.
 - **b** Find the perimeter of QUAD.

(Hint: Use the properties of quadrilaterals that you learned in chapter 5.)