Ms. Kresovic

Name Adv Geo -

•

Proof:

9.4: The Pythagorean Theorem, Geometry's Most Elegant Theorem

Objective: After studying this section, you will be able to apply the Pythagorean Theorem and its converse.

Prior knowledge:

- Triangle Inequality Theorem (chapter 1): The third side of a triangle must be
 - o Smaller than the sum of the other two sides, and
 - Larger than the difference.
- Used the Pythagorean Theorem before.

Theorem 69 The square of the measure of the hypotenuse of a right triangle is equal to the sum of the squares of the measures of the legs. (Pythagorean Theorem)

Given: $\triangle ACB$ is a right \triangle with right $\angle ACB$. Prove: $a^{2} + b^{2} = c^{2}$

_		-	
1	$\angle ACB$ is a right \angle .	1	Given
2	Draw $\overline{\text{CD}} \perp$ to $\overline{\text{AB}}$.	2	From a point outside a line, only
3	$\overline{\mathrm{CD}}$ is an altitude.	3	one \perp can be drawn to the line. A segment drawn from a vertex of $A \wedge \perp$ to the opposite side is an
4	$a^2 = (c - x)c$	4	altitude. In a right \triangle with an altitude drawn to the hypotenuse.
			$(leg)^2 = (adjacent seg.) (hypot.).$
5	$a^2 = c^2 - cx$	5	Distributive Property
6	$b^2 = xc$	6	Same as 4
7	$a^2 + b^2 = c^2 - cx + cx$	7	Addition Property
8	$a^2 + b^2 = c^2$	8	Algebra

Theorem 70

If the square of the measure of one side of a triangle equals the sum of the squares of the measures of the other two sides, then the angle opposite the longest side is a right angle.

If $a^2 + b^2 = c^2$. then $\triangle ACB$ is a right \triangle and $\angle C$ is the right \angle .

Δ b C R a

If, in the diagram above, we increased c while keeping a and b the same, $\angle C$ would become larger. Try it. Thus, a valuable extension of Theorem 70 can be stated: If c is the length of the longest side of a triangle, and a $a^2 + b^2 > c^2$ then the triangle is acute $a^2 + b^2 = c^2$, then the triangle is right $a^2 + b^2 < c^2$, then the triangle is obtuse

 $nr+\Delta$, $sm^2 + md^2 = large^2$

)<X<(14+7) +<X<21

Date

 $sm^2 + md^2 = large \rightarrow rct \Delta$

 $-or'' \log^2 + \log^2 = hi$

Name Adv Geo –

9.4: The Pythagorean Theorem, Geometry's Most Elegant Theorem

Date

Ms. Kresovic

- **12** $\angle ACB$ is a right angle and $\overline{CD} \perp \overline{AB}$.
 - **a** If AD = 7 and BD = 4, find CD.
 - **b** If CD = 8 and DB = 6, find CB.
 - **c** If BC = 8 and BD = 2, find AB.
 - **d** If AC = 21 and AB = 29, find CB.
- **14** Find the altitude (length of a segment perpendicular to both bases) of the isosceles trapezoid shown.

16 Given: Diagram as shown Find: CD

24 Find the perimeter of $\triangle DBC$.

26 The perimeter of an isosceles triangle is 32, and the length of the altitude to its base is 8. Find the length of a leg.

AMDG 9.4: The Pythagorean Theorem, Geometry's Most Elegant Theorem

Date

Ms. Kresovic

1

Adv Geo – **Homework**

1. Solve for the third side. Let *x* & *y* be the legs of a right triangle, and *r* be the hypotenuse.

	X	у	r	work	
a.	4	5			r x
b.	15		17		у у
C.		9	15		
d.	12		13		
e.	5	$5\sqrt{3}$			
f.	5		<u>√29</u>		
g.	$2\sqrt{5}$		$\sqrt{38}$		

3 Find the perimeter of a rhombus with diagonals 12 km and 16 km.

7 Find the missing length in the trapezoid.

11 Find the missing length in terms of the variable(s) provided.

- **a** $AC = x, BC = y, AB = \underline{?}$
- **b** AC = 2, BC = x, AB = $_?$
- **c** AC = 3a, BC = 4a, AB = __?
- **d** AB = 13c, AC = 5c, BC = -?

13 Al Capone walked 2 km north, 6 km west, 4 km north, and 2 km west. If Big Al decides to "go straight," how far must he walk across the fields to his starting point?

15 A piece broke off rectangle ABDF, leaving trapezoid ACDF. If BD = 16, BC = 7, FD = 24, and E is the midpoint of FD, what is the perimeter of \triangle ACE?

17 Solve for x in the partial spiral to the right.

- 19 Woody Woodpecker pecked at a 17-m wooden pole until it cracked and the upper part fell, with the top hitting the ground 10 m from the foot of the pole. Since the upper part had not completely broken off, Woody pecked away where the pole had cracked. How far was Woody above the ground?
- **21** The lengths of the diagonals of a rhombus are in the ratio 2:1. If the perimeter of the rhombus is 20, find the sum of the lengths of the diagonals.

AMDG 9.4: The Pythagorean Theorem, Geometry's Most Elegant Theorem

Date

- **23** George and Diane bought a plot of land along Richard Road with the dimensions shown.
 - a Find the area of the plot.
 - **b** Find, to the nearest meter, the length of frontage on Richard Road.

25 a Find HF.

Name

Adv Geo -

b Is \triangle EHF similar to \triangle HGF?

27 A ladder 25 ft long (JO) is leaning against a wall, reaching a point 20 ft above the ground (MO). The ladder is then moved so that JK = 2(PO). Find KM.

- **31** Quadrilateral QUAD has vertices at Q = (-7, 1), U = (1, 16), A = (9, 10), and D = (1, -5).
 - **a** Plot the figure and indicate what type of quadrilateral QUAD is.
 - **b** Find the perimeter of QUAD.

(Hint: Use the properties of quadrilaterals that you learned in chapter 5.)

Ms. Kresovic