Adv Geo -

Geometry's Most Elegant Theorem

Date

Objective: After studying this section, you will be able to apply the Pythagorean Theorem and its converse.

Prior knowledge:

- Triangle Inequality Theorem (chapter 1): The third side of a triangle must be
 - Smaller than the sum of the other two sides, and
 - Larger than the difference.
- Used the Pythagorean Theorem before.

Theorem 69 The square of the measure of the hypotenuse of a right triangle is equal to the sum of the squares of the measures of the legs. (Pythagorean Theorem)

If $rt\Delta$,

Given: \triangle ACB is a right \triangle with right $\angle ACB$.

Prove:
$$a^2 + b^2 = c^2$$

Proof:

- 1 \angle ACB is a right \angle .
- 2 Draw $\overline{\text{CD}} \perp \text{to } \overline{\text{AB}}$.
- $3 \overline{CD}$ is an altitude.

- 1 Given
- 2 From a point outside a line, only one \perp can be drawn to the line.
- 3 A segment drawn from a vertex of a $\triangle \perp$ to the opposite side is an altitude.
- 4 In a right △ with an altitude drawn to the hypotenuse, $(leg)^2 = (adjacent seg.) (hypot.).$
- 5 Distributive Property
- 6 Same as 4
- 7 Addition Property
- 8 Algebra

If the square of the measure of one side of a trian-Theorem 70 gle equals the sum of the squares of the measures of the other two sides, then the angle opposite the longest side is a right angle.

If sm2 + med2 = long2

If $a^2 + b^2 = c^2$. then $\triangle ACB$ is a right \triangle and $\angle C$ is the right \angle .

If, in the diagram above, we increased c while keeping a and b the same, ∠C would become larger. Try it. Thus, a valuable extension of Theorem 70 can be stated:

If c is the length of the longest side of a triangle, and

- $a^2 + b^2 > c^2$, then the triangle is acute
- $a^2 + b^2 = c^2$, then the triangle is right $a^2 + b^2 < c^2$, then the triangle is obtuse

Given sides $(3, 11, 10) = 3^2 + 11^2 = 10^2$ 130 > 100 : Acute

Given lengths (3, 11, 12) 32+112 122 130 5 144:

Class Examples Sum sides

p btLs →btΔ Find the perimeter of the rectangle shown.

$$5^2 + \chi^2 = 13^2$$
 Pyth.Thm

$$5^{-}+x_{-}=15^{-}$$
 Pym... $35+x^{2}=169$

$$X^{2} = |44|$$

$$X = |2|$$

L ⊥& bis

can not have anigative length

Problem 3

Find the perimeter of a rhombus with diagonals of 6 and 10. 4 4 2 Sd8

$$3^2 + 5^2 = X^2$$
 $9 + 25 = X^2$

Problem 4

Nadia skipped 3 m north, 2 m east, 4 m north, 13 m east, and 1 m north. How far is Nadia from where she started?

ladia from where she started
$$8^2 + 15^2 = Distance^2$$
 $64 + 225 = Distance^2$

Problem 5

Find the altitude of an isosceles trapezoid whose sides have lengths of 10, 30, 10, and 20.

$$a^2 + 5^2 = 10^2$$
 $a^2 = 100 - 25 = 75$

$$a^2 = 25.3$$

Solve for din the partial spiral.

$$|^{2}+|^{2}=\alpha^{2}$$

 $|+|=\alpha^{2}$

$$a^2 = a^2$$
 $= a^2$
 $= a^2$
 $= a^2$
 $= a^2$
 $= a^2$

$$\alpha = 5\sqrt{3}$$

$$e = \sqrt{6}$$

$$\frac{1}{3^2+|^2=C^2}$$
3+|=C^2

$$f = \sqrt{2}$$

$$a = C$$

$$2 + |^2 = d^2$$

2 Find the length of the diagonal of a square with perimeter

44 sds & 4rtLs

$$3^2 + 3^2 = diag^2$$

- factor a scalar: (3,3,d) longest leg $2=x^2 \rightarrow x=\sqrt{2}$ But 3x=0 so $3\sqrt{2}=0$

Date

- 4 Find the perimeter of a rectangle whose diagonal is 17 mm long and whose base is 15 mm long.
- (8,15,17)

- $\chi^2 + 15^2 = 17^2$ $\chi = 8$
- ρ=2l+2ω 2(2+ω) 2(23) = 46
- **6** \overline{PM} is an altitude of equilateral triangle PKO. If PK = 4, find PM.

also median $2^{2}+a^{2}=4^{2}$ $a^{2}=16-4$ $a^{2}=12=4\cdot3$

- 8 How far is the foot of the ladder from the wall?
 - .()

2.25 50dm

 $(d, 48, 50) \Rightarrow 2(x, 24, 25)$

$$\chi^2 + 576 = 625$$

 $\chi^2 = 49$

$$x = 7$$

then $d = 2x = 14 dm$

- **9** $\overline{AC} \parallel y$ -axis and $\overline{CB} \parallel x$ -axis.
 - a Find the coordinates of C. (X_A, Y_B) : (Q, 3)
 - b Find AC and CB. 8 & 6
 - c Find AB. = 0
 - d Is $AB = \sqrt{(8-2)^2 + (11-3)^2}$? Yes. $\frac{\Delta \chi^2 + \Delta \gamma^2}{\sqrt{6^2 + 8^2}}$ $\sqrt{36 + 64}$

10 Use the method suggested by part d of problem 9 to find PQ.

10

Review of Alt Hyp

 \angle ACB is a right angle and $\overline{\text{CD}} \perp \overline{\text{AB}}$.

- a If AD = 7 and BD = 4, find CD.
- **b** If CD = 8 and DB = 6, find CB.
- c If BC = 8 and BD = 2, find AB.
- d If AC = 21 and AB = 29, find CB.

14 Find the altitude (length of a segment perpendicular to both bases) of the isosceles trapezoid shown.

$$3^{2} + \alpha^{2} = 9^{2}$$
 $\alpha^{2} = 81 - 9 = 72$
 $\alpha^{2} = 9 \cdot 4 \cdot 2$
 $\alpha = 6\sqrt{2}$

16 Given: Diagram as shown

Find: CD

22 Classify the triangles.

$$(7-6)<10<(7+6)+7^2 100$$
 $36+49 100$
 $85 < 100$
00tuse

24 Find the perimeter of $\triangle DBC$.

$$|2^{2}+(x+10)^{2}=20^{2}$$

 $|44+x^{2}+20x+100=400$
 $x^{2}+20x+244=400$
 $x^{2}+20x-156=0$
 $(x+26)(x-6)=0$
no neg. lengths $\Rightarrow 16$

12 B 10 A

26 The perimeter of an isosceles triangle is 32, and the length of the altitude to its base is 8. Find the length of a leg.

Date

Homework

1.	Solve for the third side. Let <i>x</i> & <i>y</i> be the legs of a right triangle, and <i>r</i> be the hypotenuse.				
	X	у	r	work	
a.	4	5	√41		r x
b.	15	8	17		У
c.	12	9	15		
d.	12	5	13		
e.	5	5√3	10		
f.	5	2	√29	- 2	
g.	2√5	3/2	√38	$(2\sqrt{5})^2 + y^2 = \sqrt{38}$ $y^2 = 18$ $20 + y^2 = 38$ $y = 3\sqrt{2}$	

3 Find the perimeter of a rhombus with diagonals 12 km and

16 km.

5 Given: \overline{JG} is the altitude to base \overline{FH} of isosceles triangle JFH.

FJ = 15, FH = 24

Find: JG

7 Find the missing length in the trapezoid.

10

11 Find the missing length in terms of the variable(s) provided.

a AC = x, BC = y, AB =
$$\frac{?}{AB^2}$$
 $\frac{x^2+y^2-AB^2}{AB^2}$ $\frac{AB}{\sqrt{x^2+y^2}}$
b AC = 2, BC = x, AB = $\frac{?}{AB^2}$ $\frac{AB^2}{AB^2}$ $\frac{AB}{\sqrt{y^2+y^2}}$

b AC = 2, BC = x, AB =
$$?$$
 $AB^2 = 4 + x^2 \rightarrow AB \sqrt{4 + x^2}$

c
$$AC = 3a$$
, $BC = 4a$, $AB = ? 5a$.

d
$$AB = 13c$$
, $AC = 5c$, $BC = ? / 2c$

- 13 Al Capone walked 2 km north, 6 km west, 4 km north, and 2 km west. If Big Al decides to "go straight," how far must he walk across the fields to his starting point? lokm
- 15 A piece broke off rectangle ABDF, leaving trapezoid ACDF. If BD = 16, BC = 7, FD = 24, and E is the midpoint of \overline{FD} , what is the perimeter of $\triangle ACE$?

17 Solve for x in the partial spiral to the right.

19 Woody Woodpecker pecked at a 17-m wooden pole until it cracked and the upper part fell, with the top hitting the ground 10 m from the foot of the pole. Since the upper part had not completely broken off, Woody pecked away where the pole had cracked. How far was Woody above the ground?

$$|0^{2} + \chi^{2} = (17 - \chi)^{2}$$

$$|00| + \chi^{2} = 289 - 34\chi + \chi^{2}$$

$$34\chi - |00| + \chi^{2} - |00| + 34\chi - \chi^{2}$$

$$x = \frac{189}{34} = 5\frac{19}{34} \text{ m}$$

21 The lengths of the diagonals of a rhombus are in the ratio 2:1. If the perimeter of the rhombus is 20, find the sum of the lengths of the diagonals.

$$X^2 + (2x)^2 = 5^2$$

 $X^2 + 4x^2 = 25^2$

$$x^2 = 5$$

$$x = \sqrt{5}$$

 $x^{2}+(2x)^{2}=5^{2}$ Sum of diago = lex $x^{2}+4x^{2}=25^{2}$ 6/5

Name

9.4: The Pythagorean Theorem, Geometry's Most Elegant Theorem

Ms. Kresovic

- Adv Geo -
- **23** George and Diane bought a plot of land along Richard Road with the dimensions shown.
 - a Find the area of the plot.
 - **b** Find, to the nearest meter, the length of frontage on Richard Road.

a)
$$A_{TRAD} = AVE BASES \cdot HEIGHT$$

$$\left(\frac{40+60}{2}\right) \cdot 30 = 1500 \text{ m}^2$$

- 25 a Find HF.
 - **b** Is \triangle EHF similar to \triangle HGF?

27 A ladder 25 ft long (JO) is leaning against a wall, reaching a point 20 ft above the ground (MO). The ladder is then moved so that JK = 2(PO). Find KM.

$$25^{2} = (20+x)^{2} + (15-2x)^{2}$$

$$625 = 400+40x + x^{2} + 225 - 60x + 4x^{2}$$

$$625 = 625 - 20x + 5x^{2}$$

$$-105+10x + 625+20x$$

- **31** Quadrilateral QUAD has vertices at Q = (-7, 1), U = (1, 16), A = (9, 10), and D = (1, -5).
 - **a** Plot the figure and indicate what type of quadrilateral QUAD is.
 - **b** Find the perimeter of QUAD.

(Hint: Use the properties of quadrilaterals that you learned in chapter 5.)

mulh = $\frac{\Delta Y}{\Delta X} = \frac{16-10}{1-9} = \frac{1}{-8} = \frac{-3}{4}$ m QD= $\frac{\Delta Y}{\Delta X} = \frac{1+5}{-7-1} = \frac{1}{-8} = -\frac{3}{4}$

$$MQU = \frac{\Delta Y}{\Delta x} = \frac{16-1}{1+7} = \frac{15}{8}$$

$$m DA = \frac{\Delta Y}{\Delta X} = \frac{-5 - 10}{1 - 9} = \frac{-15}{-8} = \frac{15}{8}$$

NOT OPP RECIP

