
Objective: After studying this section, you will be able to identify the relationships between the parts of a right triangle when an altitude is drawn to the hypotenuse.

Prior Knowledge: Pythogrean Theorem, as $leg^2 + leg^2 = hypotenuse^2$ where a & b are legs and c is the hypotenuse. In our worksheet, we used similar triangles to observe that the altitude is the geometric mean of the hypotenuse parts, that is h² = xy. Some of those exericses were leading us to observe two more theorems: $a^2 = xc$ and $b^2 = yc$.

Compare this diagram to the one in our book (below) and see how the formulas are similar. Can you come up with a more generalized (verbal) formula?

Theorem 68 If an altitude is drawn to the hypotenuse of a right triangle, then

a The two triangles formed are similar to the given right triangle and to each other

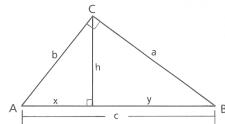
$$\triangle ADC \sim \triangle ACB \sim \triangle CDB$$

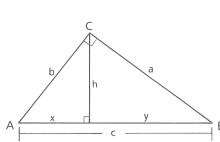
b The altitude to the hypotenuse is the mean proportional between the segments of the hypotenuse

$$\frac{x}{h} = \frac{h}{v}, \text{ or } h^2 = xy$$

c Either leg of the given right triangle is the mean proportional between the hypotenuse of the given right triangle and the segment of the hypotenuse adjacent to that leg (i.e., the projection of that leg on the hypotenuse)

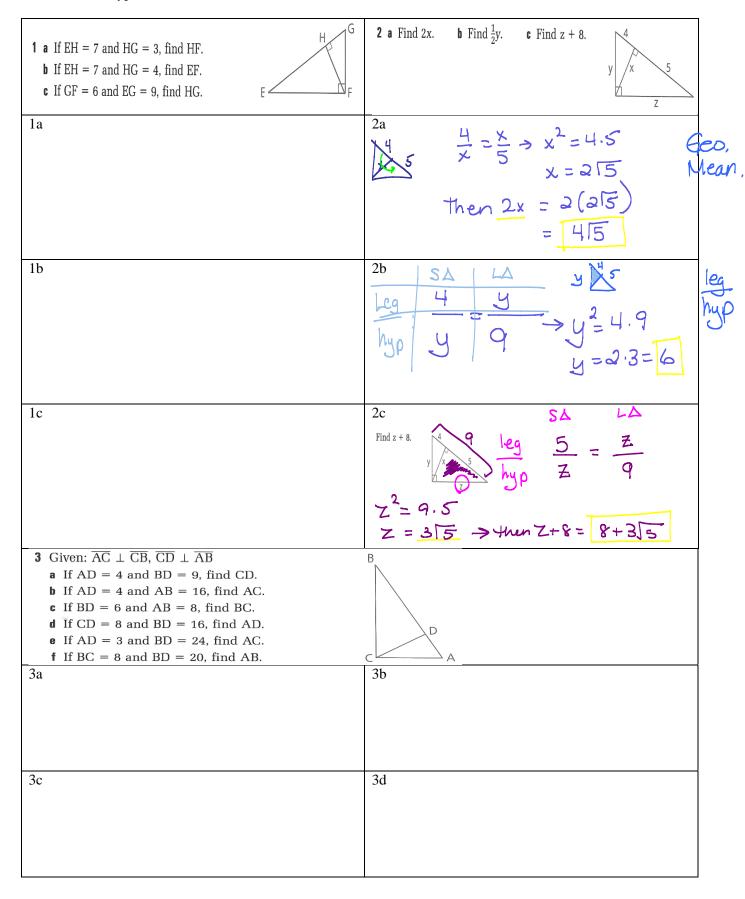
$$\frac{y}{a} = \frac{a}{c}$$
, or $a^2 = yc$; and $\frac{x}{b} = \frac{b}{c}$, or $b^2 = xc$


Parts **b** and **c** of Theorem 68 can be summarized as follows.


$$h^{2} = x \cdot y$$

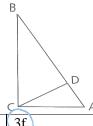
$$b^{2} = x \cdot c$$

$$a^{2} = y \cdot c$$


$$a^2 = y \cdot a$$

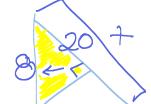
9.3: Altitude Hypotenuse Theorems

9.3: 377/ 1-8 all, 14, 16, 17, 21

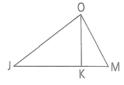

Adv. Geo. -

9.3: Altitude Hypotenuse Theorems

Ms. Kresovic Tuesday, March 04, 2014

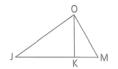

- **3** Given: $\overline{AC} \perp \overline{CB}$, $\overline{CD} \perp \overline{AB}$
 - **a** If AD = 4 and BD = 9, find CD.
 - **b** If AD = 4 and AB = 16, find AC.
 - c If BD = 6 and AB = 8, find BC.
 - **d** If CD = 8 and BD = 16, find AD.
 - e If AD = 3 and BD = 24, find AC.
 - f If BC = 8 and BD = 20, find AB.

3e



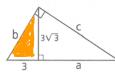
largest side opp lg. L. 8<20:

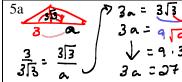
NOT POSSIBLE


- **4** Given: $\angle JOM = 90^{\circ}$; \overline{OK} is an altitude.
 - a If JK = 12 and KM = 5, find OK.
 - **b** If OK = $3\sqrt{5}$ and JK = 9, find KM.
 - c If $JO = 3\sqrt{2}$ and JK = 3, find JM.
 - d If KM = 5 and JK = 6, find OM.

4a

4_b


- **4** Given: $\angle JOM = 90^{\circ}$; \overline{OK} is an altitude.
 - a If JK = 12 and KM = 5, find OK.
 - **b** If OK = $3\sqrt{5}$ and JK = 9, find KM.
 - c If $JO = 3\sqrt{2}$ and JK = 3, find JM.
 - d If KM = 5 and JK = 6, find OM.



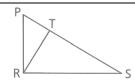
4c

4d

- **5 a** Find *a*.
 - b Find ab.
 - c Find a + b + c.

5d

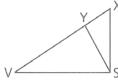
5b PYTH.THM



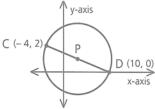
G2=144-36

Find a+b+c = 9+ le+ le

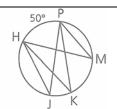
6 Given: RT is an altitude. ∠PRS is a right ∠.


Conclusion: $\frac{PR}{RS} = \frac{RT}{ST}$

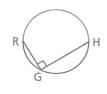
Statements	Reasons
------------	---------

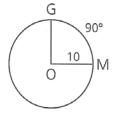

7 Given: \overline{SY} is an altitude. $\angle VSX$ is a right $\angle.$

Prove: $XY \cdot SV = XS \cdot YS$



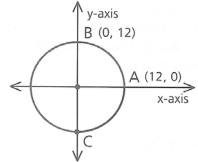
Statements Reasons


8 Find the coordinates of P, the center of the circle.


9 Given: Diagram as marked Find: m∠HJP, m∠HKP, and m∠HMP

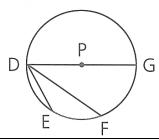
10 Find the measure of \widehat{RH} .

11 Find the area of sector MOG.

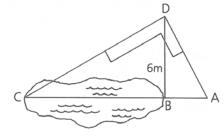


12b

12c


- 12 a Find the coordinates of point C.
 - **b** Find the measure of the arc from A to B to C ($\widehat{\text{mABC}}$).

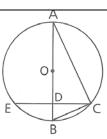
c Find the length of \widehat{ABC} .



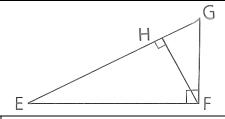
V

13 In \bigcirc P, mFG = 80 and mDE = 40. Find mEF and m∠EDF.

14 As Slarpy stood at B, the foot of a 6-m pole, he asked Carpy how far it was across the pond from B to C. Carpy got his carpenter's square and climbed the pole. Using his lines of sight, he set up the figure shown. When Slarpy found that AB = 3 m, Carpy knew the answer. What was it?

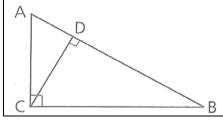


15 Given: \bigcirc O, $\overline{CD} \perp \overline{AB}$;


 \angle ACB is a right \angle .

Conclusions: a $\frac{AD}{CD} = \frac{CD}{BD}$

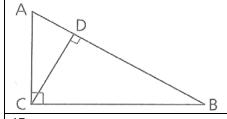
$$\mathbf{h} \ \frac{\cdot AD}{ED} = \frac{ED}{BD}$$


- **16 a** If HG = 4 and EF = $3\sqrt{5}$, find EH.
 - **b** If GF = 6 and EH = 9, find EG.

16a

16b

- 17 a If AD = 7 and AB = 11, find CD.
 - **b** If CD = 8 and AD = 6, find AB.
 - c If AB = 12 and AD = 4, find BC.
 - **d** If AC = 7 and AB = 12, find BD.

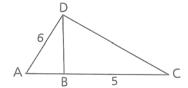


17a

9.3: Altitude Hypotenuse Theorems

17b

- Adv. Geo. 9.3: **17 a** If AD = 7 and AB = 11, find CD.
 - **b** If CD = 8 and AD = 6, find AB.
 - c If AB = 12 and AD = 4, find BC.
 - **d** If AC = 7 and AB = 12, find BD.


17d

21 Given: $\overline{AD} \perp \overline{CD}$,

 $\overline{\mathrm{BD}}\perp \overline{\mathrm{AC}}$,

BC = 5, AD = 6

Find: BD

