9.1Review of Radicals and Quadratic Equations

Ms. Kresovic Monday 24 February 2014

Objectives

- Simplify radicals
- Solve Quadratic Equations
 - Method 1: Solve for x
 - Method 2: Factoring
 - o Method 3: Factoring by grouping
 - o Method 4: Area model
- Review of Pythagorean Theorem and radicals (below)

Class Examples

Simplify $\sqrt{48}$. Problem 1

Solution

$$\sqrt{48} = \sqrt{16 \cdot 3}$$
 (16 is a perfect square.) (1.4) \(\frac{3}{4} \) = $\sqrt{16} \cdot \sqrt{3}$ = $4\sqrt{3}$

Simplify $\sqrt{18} + \sqrt{32} + \sqrt{75}$. Problem 2

Solution

$$\sqrt{18} + \sqrt{32} + \sqrt{75} = \sqrt{9 \cdot 2} + \sqrt{16 \cdot 2} + \sqrt{25 \cdot 3}$$
$$= 3\sqrt{2} + 4\sqrt{2} + 5\sqrt{3}$$
$$= 5\sqrt{3} + 7\sqrt{2}$$

Simplify $\sqrt{\frac{5}{3}}$. Problem 3

Solution

$$\sqrt{\frac{5}{3}} = \frac{\sqrt{5}}{\sqrt{3}}$$

$$= \frac{\sqrt{5}}{\sqrt{3}} \cdot \sqrt{\frac{3}{3}}$$
The two answers are equivalent simplifications.)

1/16 = 4 $= \frac{\sqrt{15}}{3} \text{ or } \frac{1}{3}\sqrt{15} \quad \text{(The two answers are equivalent simplifications.)}$

Problem 4. Simplify $\sqrt{98} = \sqrt{49}$. $\sqrt{2} = 27$

Simplify $\sqrt{200} = 125 \sqrt{8} = 5\sqrt{8} \rightarrow 5\sqrt{4} \sqrt{2} = 10\sqrt{2}$ Problem 5. 100 . JZ =±1012

Simplify $\sqrt{(4+9)} = +\sqrt{13}$ Problem 6.

Simplify $\sqrt{4 \cdot 9} = 2.3 = \frac{1}{2}$ Problem 7.

Problem 8. Simplify $\sqrt{3^{\frac{1}{8}} + 4^2} = \sqrt{9 + 16} = \sqrt{55} = \sqrt{5}$

Problem 9. Simplify
$$\frac{9\sqrt{3}}{\sqrt{3}} = \frac{9\sqrt{3}}{3} = 3\sqrt{3}$$

Problem 10. Simplify
$$7\sqrt{5} + \sqrt{7} + 6\sqrt{5} + \sqrt{7} = 13\sqrt{5} + 2\sqrt{7}$$

Method 4: An area model

9.1Review of Radicals and Quadratic Equations

Ms. Kresovic Monday 24 February 2014

Solving Quadratics:

You may use any method that you are comfortable with, and that allows you to be successful. You are in a unique position as I will survey you at the end of this class and after your homework about these methods. This information will be share d with the department at our meeting this Thursday.

Problem 11. Solve $x^2 + 9 = 25$

$$(3) x^{2} + 9 = 25$$

$$-25 - 35$$

$$x^{2} - 16 = 0 \quad \text{see Flowchart}$$

$$DOTS$$

$$(x - 4)(x + 4) = 0$$

$$x = 4 \quad \text{or } -4$$

$$3 x^{2} + 9 = 25$$

$$x^{2} - 16 = 0$$

$$Adds to 0 x$$

$$\frac{\chi^{2} + 4x - 4x - 16}{x}$$

$$\chi(x+4) - 4(x+4)$$

$$(x-4)(x+4)$$

Problem 12.
$$x^2 + 13x + 42$$

$$0 x^{2} + 13x + 42$$

$$\frac{x^{2} + 6x + 7x + 42}{x}$$

$$\frac{x^{2} + 6x + 7x + 42}{7}$$

$$x(x+6) + 7(x+6)$$

$$(x+6)(x+7)$$

AMDG

Problem 13. $y^2 - 15y + 54$

$$3y^{2}-5y+54$$

$$y^{2}-9y+6y+54$$

$$y(y-9)-4(y-9)$$

$$(y-9)(y-6)$$

$$y^{2}-15y +54$$
what mult to 54
$$(x-9) (x-6)$$

$$(x-9) (x-6)$$

$$y^{2}-15y +54$$

$$y^{2}-6y$$

$$-9y -6y$$

$$-9y -9y -54$$
What mult to $54y^{2}$
adds to $-15y$

$$(2-7)(2+4)$$

3 z2-3z-28

$$\frac{z^2-7z+4/z-28}{z}$$

(Z-7) (Z+4)

Do 1-5 for homework

NAME Adv Geo –

9.1Review of Radicals and Quadratic Equations

Ms. Kresovic Monday 24 February 2014

Problem 15. $-20n^2 + 9n + 20$

AMDG **Problem 16.** Solve $(3\sqrt{5})^2 + (3\sqrt{2})^2 = x^2$ for x.

NAME Adv Geo –

9.1Review of Radicals and Quadratic Equations

Ms. Kresovic Monday 24 February 2014

Problem 17. Solve for x. **a** $x^2 - 10x = -16$ **b** $x^2 + 5x = 0$

$$bx^2 + 5x = 0$$

Homework

1 Simplify.

a
$$\sqrt{4}$$

b $\sqrt{27}$

c
$$\sqrt{72}$$
 d $\sqrt{32}$

e
$$\sqrt{98}$$
 f $\sqrt{200}$

g
$$\sqrt{20}$$
 h $\sqrt{24}$

2 Simplify.

a
$$5\sqrt{18}$$

$$\sqrt{3^2+4^2}$$

e
$$\frac{1}{6}\sqrt{48}$$

b
$$\sqrt{4+9}$$

d
$$\sqrt{5^2 + 12^2}$$

f
$$\sqrt{49 \cdot 3}$$

3 Simplify.

a
$$\frac{1}{\sqrt{2}}$$

b
$$\frac{1}{\sqrt{5}}$$

$$c \frac{4}{\sqrt{2}}$$

d
$$\frac{6}{\sqrt{3}}$$

4 Simplify.

a
$$4\sqrt{3} + 7\sqrt{3}$$

b
$$7\sqrt{2} + \sqrt{3} + 6\sqrt{3} + \sqrt{2}$$

c
$$\sqrt{12} + \sqrt{27}$$

d
$$\sqrt{72} + \sqrt{75} - \sqrt{48}$$

5 Solve for x.

a
$$x^2 = 25$$

b $x^2 = 144$

$$x^2 = 169$$

d
$$x^2 = \frac{1}{4}$$

e
$$x^2 = 12$$

$$f x^2 = 18$$

$$x^2 + 16 = 25$$

b
$$x^2 + 6^2 = 100$$

$$c 12^2 + x^2 = 13^2$$

d
$$x^2 + (3\sqrt{3})^2 = 36$$

$$(\sqrt{5})^2 + (\sqrt{11})^2 = x^2$$

d
$$x^2 + (3\sqrt{3})^2 = 36$$
 f $x^2 = (5\sqrt{3})^2 + (\sqrt{5})^2$

a
$$x^2 - 5x - 6 = 0$$
 c $x^2 - 8x + 15 = 0$

$$\mathbf{c} \ \mathbf{x}^2 - 8\mathbf{x} + 15 = 0$$

$$ex^2 - 36 = 9x$$

b
$$x^2 + 4x - 12 = 0$$

$$4x - 12 = 0$$
 d $x^2 - 18 - 3x = 0$

$$f - x^2 + 5x + 36 = 0$$

$$x^2 - 4x = 0$$

$$x^2 - 2x = 11x$$

b
$$x^2 = 10x$$

d
$$5x = x^2 - 3x$$

- **9** If, in the given figure, $x^2 + y^2 = r^2$,
 - a Find x if y = 21 and r = 29
 - b Find y, in simplified radical form, if x = 2 and r = 4
 - c Find r to the nearest tenth if x = 4.1

10 Solve for x.

a
$$3x^2 + 5x - 7 = x^2 + 8x + 28$$

b
$$12x^2 - 15 = -11x$$

$$\mathbf{c} \ 8x^2 - 7x + 9 = 2x^2 + 6x + 7$$

11 Solve
$$\frac{7}{x+1} = \frac{2x+4}{3x-3}$$
 for x.

12 Find AB

13 Simplify.

a $\sqrt{h^2}$, if h represents a negative number

b
$$\sqrt{(x-3)^2}$$
, if $x < 3$

 $\sqrt[3]{p^2q^2}$, if p and q both represent negative numbers

d
$$\sqrt{x^3y^2}$$
, if $x > 0$ and $y < 0$