Pages 139-141 (Section 3.5)

1 Given: AB ≈ DC $\overline{AC} \cong \overline{DB}$

Prove: △ABC ≅ △DCB

 $1 \overline{AB} \cong \overline{DC}, \overline{AC} \cong \overline{DB}$

 $2 \overline{BC} \cong \overline{BC}$

3 △ABC ≅ △DCB

1 Given

2 Reflexive prop

3 SSS

1 Given

2 Given

4 Given

6 SAS

3 Rt∠s are ≅.

5 Reflexive prop

2 Given: ∠FGH is a rt ∠.

∠JHG is a rt ∠. FG ≅ JH

Prove: △FGH ≅ △JHG

1 ∠FGH is a rt ∠.

2 ∠JHG is a rt ∠.

3 ∠FGH ≅ ∠JHG

4 FG ≅ JH

5 GH ≃ GH

6 △FGH ≅ △JHG

3 Given: PM ≈ RM

∠SPM ≃ ∠ORM

Prove: △PSM ≅ △ROM

 $1 \overline{PM} \cong \overline{RM}$

2 ∠SPM ≅ ∠ORM

 $3 \angle M \cong \angle M$

2 Given 3 Reflexive prop

1 Given

 $4 \triangle PSM \cong \triangle ROM$

4 ASA

4 Given: ∠1 ≅ ∠3

42 = 44

Concl: $\overline{BC} \cong \overline{ED}$

 $1 \angle 1 \cong \angle 3, \angle 2 \cong \angle 4$

 $2 \overline{CD} \cong \overline{CD}$

3 ∠BCD ≃∠EDC

4 ΔBCD ≅ ΔEDC

 $5 \overline{BC} \cong \overline{ED}$

1 Given

2 Reflexive prop

3 Addition prop

4 ASA

5 CPCTC

Given: JH ≃ KH

 $\overline{HG} \cong \overline{HM}$

∠5≅∠6

Concl: △JHG = △KHM

 $1 \overline{JH} \cong \overline{KH}, \overline{HG} \cong \overline{HM}$

2 ∠5 ≅ ∠6

3 ∠GHK ≅ ∠GHK

4 ∠JHG ≅ ∠KHM

3 Reflexive prop

4 Addition prop

5 △JHG ≅ △KHM

5 SAS

1 Given

2 Given

6 Given: $\angle 1$ is comp to $\angle 2$. ∠3 is comp to ∠4.

 $\angle 1 \cong \angle 3$

Concl: $\overline{AB} \cong \overline{CD}$

1 $\angle 1$ is comp to $\angle 2$.

2 ∠3 is comp to ∠4.

3 ∠1 ≅ ∠3

4 ∠2 ≅ ∠4

5 ∠ABC ≅ ∠DCB

 $6 \ \overline{BC} \cong \overline{BC}$

 $7 \triangle ABC \cong \triangle DCB$

 $8 \overline{AB} \cong \overline{CD}$

1 NOPRS is equilateral.

2 ∠OPR ≅ ∠PRS

 $3 \overline{OP} \cong \overline{SR}$

 $4 \overline{PR} \cong \overline{PR}$

1 Given

2 Given

3 Given

4 Comps of ≃ ∠s are ≅.

5 Addition prop

6 Reflexive prop

7 ASA

8 CPCTC

7 Given: Figure NOPRS is

equilateral.

∠OPR ≅ ∠PRS

 $\overline{PT} \cong \overline{TR}$

Prove: $\overline{OT} \cong \overline{ST}$

5 △OPR ≅ △SRP

 $6 \overline{OR} \cong \overline{SP}$

 $7 \overline{PT} \cong \overline{TR}$

 $8 \overline{OT} \cong \overline{ST}$

1 Given

2 Given

3 All sides are ≅.

4 Reflexive prop

5 SAS

6 CPCTC

7 Given

8 Subtraction prop

Given: ∠9 ≅ ∠10

∠GFH ≅ ∠HJG

Concl: $\overline{FG} \cong \overline{JH}$ 1 ∠9 ≅ ∠10

 $2 \angle 9 \cong \angle 11, \angle 10 \cong \angle 12$

3 ∠11 ≅ ∠12

4 ∠GFH ≅∠HJG

5 ∠GFJ ≅∠HJF

 $6 \overline{\text{FJ}} \cong \overline{\text{FJ}}$

7 △GFJ ≅ △HJF $8 \overline{FG} \cong \overline{JH}$

G Given

2 Vert∠s are ≅.

3 Transitive prop

4 Given

5 Addition prop 6 Reflexive prop

7 ASA

3 Given: $\overline{SX} \cong \overline{TY}$

 $\overline{WX} \cong \overline{YZ}$

 $\overline{SW} \cong \overline{TZ}$

Prove: $\overline{RW} \cong \overline{RZ}$

 $1 \overline{SX} \cong \overline{TY}$

 $2 \overline{WX} \cong \overline{YZ}$

 $3 \overline{SW} \cong \overline{TZ}$

 $4 \triangle SWX \cong \triangle TZY$

5 ∠RWX ≅ ∠RZY

 $6 \overline{RW} \cong \overline{RZ}$

4 Given: ∠3 ≅ ∠6

∠3 comp to ∠4

∠6 comp to ∠5

Prove: AEBC is isos.

1 ∠3 ≃ ∠6

2 ∠3 comp to ∠4

3 ∠6 comp to ∠5

4 ∠4 ≅ ∠5

 $5 \overline{EB} \cong \overline{EC}$

6 △EBC is isos.

6 If A then A

1 Given

1 Given

2 Given

3 Given

5 CPCTC

4 SSS

2 Given

3 Given

4 Comps of ≅ ∠s are ≅.

5 If A then A

6 If at least 2 sides of a △

are \cong , the \triangle is isos.

5 Given: FH ≈ GJ

△FKJ is isos

with $\overline{FK} \cong \overline{JK}$.

Prove: △FKH ≅ △JKG

1 FH ≅ GJ

2 △FKG is isos,

 $\overline{FK} \cong \overline{JK}$

3 ∠GFK ≅ ∠HJK

4 △FKH ≅ △JKG

6 Given: $\angle 5 \cong \angle 6$ JG is alt to FH.

Prove: $\triangle FJH$ is isos.

1 ∠5 ≅ ∠6

2 JG is alt to FH.

3 ∠JGF and ∠JGH are rt∠s.

4 ∠JGF ≅ ∠JGH

 $5 \overline{JG} \cong \overline{JG}$

6 △FJG ≅ △HJG

 $7 \overline{\text{FJ}} \cong \overline{\text{HJ}}$

8 ΔFJH is isos.

1 Given

2 Given

3 If A then A

4 SAS

1 Given

2 Given

3 An alt of a △ forms rt ∠s with one of the sides.

4 Rt∠s are ≅.

5 Reflexive prop

6 ASA

7 CPCTC

8 If at least 2 sides of a A

are \cong , the \triangle is isos.

8 $m \angle R < m \angle P$ and $m \angle R + m \angle P < 180$

4x < 7x - 18

4x + 7x - 18 < 180

18 < 3x

11x < 198

6 < x

x < 18

.6 < x < 18

9 Given: OP ≅ RS

 $\overline{KO} \cong \overline{KS}$

M mdpt of OK

T mdpt of KS

Prove: $\overline{MP} \cong \overline{TR}$

 $1 \overline{OP} \cong \overline{RS}$

 $2 \overline{KO} \cong \overline{KS}$

3 M mdpt of OK

4 T mdpt of KS

5 MO ≅ TS

6 ∠0 ≅ ∠S

7 △MOP ≅ △TSR

 $8 \overline{MP} \cong \overline{TR}$

1 Given

2 Given

3 Given

4 Given

5 Division prop

6 If A then A

7 SAS

8 CPCTC

10 Given: ⊙ O

 $\overline{OX} \cong \overline{XW}$

Prove: $\triangle XOW$ is

equilateral.

100

 $2 \overline{XO} \cong \overline{WO}$

 $3 \overline{OX} \cong \overline{XW}$

 $4 \overline{WO} \cong \overline{XW}$

1 Given

2 Radii of a ⊙ are ≅.

3 Given

4 Transitive prop

5 An equilateral △ is one in

which all sides are ≅.

11 \angle ACB is 90° because $\overline{AC} \perp \overline{BC}$.

5 △XOW is equilateral.

3x = 90BC = x + 20

AC = 2x - 20,

AC = 2(30) - 20 = 40

x = 30BC = 30 + 20 = 50

No, △ABC is not isos because no sides are ≅.

(AB > either leg)

12 a Since \overline{QS} and \overline{QP} are both radii of O Q, $\overline{QS} \cong \overline{QP}$.

 $m \angle PSQ = m \angle P = 36^{\circ}$

b \angle PSR is rt \angle , so m \angle R = 180° - 90° - 36° = 54°

13 Given: $\overline{BE} \cong \overline{BD}$ $\overline{\text{BE}} \perp \overline{\text{AE}}$ ∠BDC = 90° Prove: ∠AED ≅ ∠CDE $1 \overline{BE} \cong \overline{BD}$ 1 Given $2 \angle 1 \cong \angle 2$ 2 If A then △ 3 BE L AE 3 Given 4 ∠BEA is a rt ∠. 4 If 2 segs are ⊥, they form rt Ls. 5 ∠BDC = 90° 5 Given 6 ∠BDC is a rt∠. 6 Art∠is an∠of 90°. 7 ∠BEA ≃ ∠BDC 7 Rt∠s are ≅. 8 ∠AED ≡ ∠CDE 8 Addition prop 14 Given: △ABC is isos with $\overline{AB} \cong \overline{AC}$. AX is median to BC. Prove: AX bis ∠BAC. 1 △ABC is isos, 1 Given $\overline{AB} \cong \overline{AC}$. 2 If A then A $2 \angle B \cong \angle C$ 3 AX is median to BC. 3 Given $4 \ \overline{\text{BX}} \cong \overline{\text{XC}}$ 4 A median of a △ divides one side into $2 \cong segs$. 5 △ABX ≅ △ACX 5 SAS 6 ∠BAX ≃ ∠CAX 6 CPCTC 7 AX bis∠BAC. 7 If a ray divides an ∠ into $2 \cong \angle s$, it bis the \angle . 15 Given: HK ≅ JM $\overline{GJ} \cong \overline{JK}$

to HM. Prove: $\triangle FHM$ is isos. $1 \overline{HK} \cong \overline{JM}$ 1 Given $2 \overline{JK} \cong \overline{JK}$ 2 Reflexive prop 3 HJ ≅ KM 3 Subtraction prop $4 \overline{GJ} \cong \overline{JK}$ 4 Given $5 \ \overline{OK} \cong \overline{JK}$ 5 Given $6 \overline{GJ} \cong \overline{OK}$ 6 Transitive prop 7 GJ and OK \(\pm\) HM 7 Given 8 ∠GJH and ∠OKM 8 If 2 segs are ⊥, they are rt∠s. form rt∠s.

9 Rt∠s are ≅.

10 SAS

 $\overline{OK} \cong \overline{JK}$ \overline{GJ} and \overline{OK} are \bot

9 ∠GJH ≅ ∠OKM

10 △GJH ≃ △OMK

11 ∠H ≅ ∠M 11 CPCTC 12 HF ≅ MF 12 If A then A 13 △FHM is isos. 13 If $a \triangle has 2 \cong sides$, it is isos. 16 Given: PR = ST $\overline{NP} \cong \overline{VT}$ $\angle P \cong \angle T$ Prove: \(\Delta WRS \) is isos. 1 PR ≈ ST 1 Given $2 \overline{RS} \cong \overline{RS}$ 2 Reflexive prop $3 \overline{PS} \cong \overline{RT}$ 3 Addition prop $4 \overline{NP} \cong \overline{VT}$ 4 Given $5 \angle P \cong \angle T$ 5 Given 6 △NPS ≅ △VTR 6 SAS $7 \angle S \cong \angle R$ 7 CPCTC 8 RW ≃ SW 8 If A then A 9 AWRS is isos. 9 If $a \triangle has 2 \cong sides$, it is isos. 17 Given: YZ is base of an isos △. **∠2** ≃ **∠**Z $\angle 1 \cong \angle Y$ Prove: XA bis ∠BXZ. 1 \overline{YZ} base of isos Δ . 1 Given $2 \angle 2 \cong \angle Z, \angle 1 \cong \angle Y$ 2 Given $3 \overline{XY} \cong \overline{XZ}$ 3 An isos \triangle is a \triangle in which at least 2 sides are ≅. 4 If A then A $4 \angle Y \cong \angle Z$ 5 ∠1 ≅ ∠2 5 Transitive prop 6 XA bis∠BXZ. 6 If a ray divides an ∠ into

18 The base of the pyramid is a square, and since all 4 sides of a square are ≅, the 4 bases of the isos Δs are ≅. Each Δ is isos. Since each Δ shares a side with 2 other Δs, all 4 legs involved must be ≅. Then all 4 Δs are ≅ by SSS.
19 Given: HJ ≅ MK

 $2 \cong \angle s$, it bis the \angle .

20 Since
$$\overline{AB} \cong \overline{AC}$$
, $\angle B \cong \angle C$ because if \triangle then \triangle .
 $x + 6 = 2x - 54$

$$60 = x$$

$$\angle B = 60 + 6 = 66, \angle C = 2(60) - 54 = 66$$

BC =
$$\frac{1}{2}(66) = 33$$

$$AB = \frac{1}{3}(66) = 22$$

 $\overline{AC} \cong \overline{AB}$ so AC = 22

Perimeter of △ABC = 77 cm

21 Given: CE ≅ CF

∠E supp to ∠5

Prove: \(\triangle CDG \) is isos.

- $1 \overline{CE} \cong \overline{CF}$
- $2 \angle E \cong \angle F$
- 3 ∠F≅∠3
- 4 ∠E ≅ ∠3
- 5 ∠E supp∠5
- 6 ∠4 supp∠5
- 7 ∠E ≅ ∠4
- 8 ∠3 ≅ ∠4
- $9 \ \overline{CD} \cong \overline{CG}$
- 10 ΔCDG is isos.

- 1 Given
- 2 If A then A
- 3 Given
- 4 Transitive prop
- 5 Given
- 6 If 2∠s form a st∠, they
- are supp. 7 Supp of same ∠ are ≅.
- 8 Transitive prop
- 9 If A then A
- 10 An isos △ is a △ in which at least 2 sides are ≅.

Concl: △FKJ is isos.

- $1 \overline{FG} \cong \overline{JH}$
- 2 ∠FGH ≅ ∠JHG
- 3 GH ≅ GH
- 4 △FGH ≅ △JHG
- 5 ∠JGH ≅ ∠FHG
- $6 \ \overline{GK} \cong \overline{KH}$
- 7 JG ≅ FH
- 8 FK ≅ KJ
- 9 △FKJ is isos.
- 7 CPCTC 8 Subtraction prop

6 If A then A

3 Reflexive prop

1 Given

2 Given

4 SAS

5 CPCTC

- 9 An isos △ is a △ in which at least 2 sides are ≅.
- 23 Given: OO, OP
 - AB bis ∠OAP
 - and∠OBP.

Prove: Figure AOBP is

equilateral.

- 1 0 0, 0 P
- $2 \overline{OA} \cong \overline{OB}$
- $3 \overline{AP} \cong \overline{PB}$
- 4 ∠OAB ≅ ∠OBA
- 5 ∠PAB ≅ ∠PBA
- 6 AB bis∠OAP and
- ∠OBP.
- $7 \angle OAB \cong \angle PAB$,
- ∠OBA ≅ ∠PBA
- 8 ∠OBA ≅ ∠PBA ≅
 - ∠OAB ≅ ∠PAB
- $9 \overline{AB} \cong \overline{AB}$
- 10 △OAB ≅ △PAB
- 11 $\overline{OA} \cong \overline{PA}, \overline{OB} \cong \overline{PB}$
- 12 OA ≅ PA ≅
 - $\overline{OB} \cong \overline{PB}$
- 13 Figure AOBP is
 - equilateral.

- 1 Given
- 2 Radii of a ⊙ are ≅.
- 3 Same as 2
- 4 If A then A
- 5 If A then A
- 6 Given
- 7 If a line bis an ∠, it divides the \angle into $2 \cong \angle$ s.
- 8 Transitive prop
- 9 Reflexive prop
- 10 ASA
- 11 CPCTC
 - - 12 Transitive prop
 - - 13 If all sides of a figure are
 - ≅, the figure is equilateral.
- 24 Given: Figure XSTOW is equilateral and equiangular.
 - Prove: AYTO is isos.
 - 1 XSTOW is equilateral and equiangular.
 - $2 \overline{ST} \cong \overline{WO}$
- $3 \overline{TO} \cong \overline{TO}$
 - 4 ∠STO ≅ ∠WOT

 - $5 \triangle STO \cong \triangle WOT$
 - 6 ∠YOT ≅ ∠YTO
 - $7 \overline{\text{TY}} \cong \overline{\text{YO}}$
 - 8 ΔΥΤΟ is isos.
- 5 SAS

1 Given

- 6 CPCTC
- 7 If A then A
- 8 If a △ has at least 2 sides \cong , the \triangle is isos.

2 If a figure is equilateral,

4 If a figure is equiangular,

all sides are ≅.

3 Reflexive prop

all ∠s are ≅.

- 25 Since $\angle D \cong \angle F \cong \angle DEF$ and $\overline{GE} \perp \overline{DE}$,
 - $\angle FEG + \angle D = 90$ and $\angle FEG + \angle F = 90$.
 - 4x + y = 96

x + y + 3x - 6 = 90

x + 7y = 78

x + y + 6y + 12 = 90

- 4x = 96 y
- $x = 24 \frac{1}{4}y$ Substituting,
 - $(24 \frac{1}{4}y) + 7y = 78$
- Then $x = 24 \frac{1}{4}y$
 - $x = 24 \frac{1}{4}(8) = 22$ and $\angle F = 6(8) + 12$
 - $x = 22, y = 8, \angle F = 60^{\circ}$

22 Given: $\overline{FG} \cong \overline{JH}$

∠FGH ≅ ∠JHG

Concl: AFKJ is isos.

 $1 \overline{FG} \cong \overline{JH}$

2 ∠FGH ≅ ∠JHG

 $3 \overline{GH} \cong \overline{GH}$

 $4 \triangle FGH \cong \triangle JHG$

5 ∠JGH ≅ ∠FHG

 $6 \ \overline{GK} \cong \overline{KH}$

 $7 \overline{JG} \cong \overline{FH}$

 $8 \overline{FK} \cong \overline{KJ}$

9 △FKJ is isos.

1 Given

2 Given

3 Reflexive prop

4 SAS

5 CPCTC

6 If A then A

7 CPCTC

8 Subtraction prop

9 An isos △ is a △ in which

at least 2 sides are ≅.

23 Given: ⊙ O, ⊙ P

AB bis ∠OAP

and ∠OBP.

Prove: Figure AOBP is

equilateral.

1 0 0, 0 P

 $2 \overline{OA} \cong \overline{OB}$

 $3 \overline{AP} \cong \overline{PB}$

4 ∠OAB ≅ ∠OBA

5 ∠PAB ≅ ∠PBA

6 AB bis∠OAP and

ZOBP.

 $7 \angle OAB \cong \angle PAB$,

∠OBA ≅ ∠PBA

8 ∠OBA ≅ ∠PBA ≅

∠OAB ≅ ∠PAB

 $9 \overline{AB} \cong \overline{AB}$

10 △OAB ≅ △PAB

11 $\overline{OA} \cong \overline{PA}, \overline{OB} \cong \overline{PB}$

 $12 \overline{OA} \cong \overline{PA} \cong$ $\overline{OB} \cong \overline{PB}$

13 Figure AOBP is equilateral.

1 Given

2 Radii of a ⊙ are ≅.

3 Same as 2

4 If A then A

5 If A then A

6 Given

7 If a line bis an ∠, it divides the ∠ into 2 ≅ ∠s.

8 Transitive prop

9 Reflexive prop

10 ASA

11 CPCTC

12 Transitive prop

13 If all sides of a figure are ≅, the figure is equilateral. 24 Given: Figure XSTOW is equilateral and equiangular.

Prove: AYTO is isos.

 XSTOW is equilateral and equiangular.

$$2 \overline{ST} \cong \overline{WO}$$

$$3 \overline{TO} \cong \overline{TO}$$

4 ∠STO ≅ ∠WOT

$$5 \triangle STO \cong \triangle WOT$$

$$6 \angle YOT \cong \angle YTO$$

$$7 \overline{\text{TY}} \cong \overline{\text{YO}}$$

8 ΔΥΤΟ is isos.

1 Given

3 Reflexive prop

4 If a figure is equiangular, all ∠s are ≅.

- 5 SAS
- 6 CPCTC
- 7 If A then A
- 8 If $a \triangle$ has at least 2 sides \cong , the \triangle is isos.

Since
$$\angle D \cong \angle F \cong \angle DEF$$
 and $\overline{GE} \perp \overline{DE}$,
 $\angle FEG + \angle D = 90$ and $\angle FEG + \angle F = 90$.
 $x + y + 3x - 6 = 90$ $x + y + 6y + 12 = 90$
 $4x + y = 96$ $x + 7y = 78$
 $4x = 96 - y$
 $x = 24 - \frac{1}{4}y$ Substituting,

$$(24 - \frac{1}{4}y) + 7y = 78$$

$$\frac{27}{4} = 54$$

$$y = 8$$

Then x =
$$24 - \frac{1}{4}y$$

x = $24 - \frac{1}{4}(8) = 22$ and $\angle F = 6(8) + 12$
x = 22 , y = 8 , $\angle F = 60^{\circ}$

25 Given:
$$\triangle FED$$
 is equilateral. $\rightarrow a$ 11 LS&SdS $\stackrel{\square}{=}$

$$\overline{GE} \perp \overline{DE}, \rightarrow 90$$

$$m \angle FEG = x + y,$$

$$m \angle D = 3x - 6,$$

$$m \angle F = 6y + 12$$

Find: x, y, and $\angle F$

$$2D=2F$$
 $3x-6=6y+12$
 $3x-6y=18$
 $3x-2y=6$

$$\angle DEF + \angle FEG = 90^{\circ}$$

 $6y + 12 + x + y = 90 *$
 $\Rightarrow +7y = 78$
 $x = -7y + 78$

$$3x-6 = 6y + 12$$

 $3x-18 = 6y$
 $\frac{1}{6}(3x-18) = y$
 $(3x-18)/6 = y$

$$6y+12+x+y=90$$

$$7y + x + 12 = 90$$

$$7y = -x + 78$$

$$4y= (-x+78)/7$$