AMDG

Name

Adv Geo

10-9: Circumference and Arc Length

Objectives

After studying this section, you will be able to

- Determine the circumference of a circle
- Determine the length of an arc

Definition

The circumference of a circle is its perimeter.

Postulate

 $C = \pi d$

Theorem 98

The length of an arc is equal to the circumference of its circle times the fractional part of the circle determined by the arc.

Length of
$$\widehat{PQ} = \left(\frac{m\widehat{PQ}}{360}\right)\pi d$$

where d is the diameter and \widehat{PQ} is measured in degrees.

Problem 1

Find the radius of a circle whose circumference is 50π .

Problem 2

Find the length of each arc of a circle with a 12-cm radius.

Problem 3

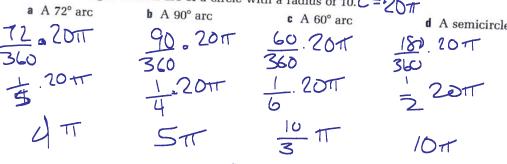
The diameter of a bicycle wheel (including the tire) is 70 cm.

- a How far will the bicycle travel if the wheel retates 1000 times?

 (Approximate the answer in meters.) → 7 □ (1000) → 700 □
- b How many revolutions will the wheel make if the bicycle travels

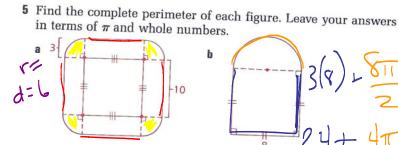
 15 m? (Approximate to the nearest tenth of a revolution.)

Problem Set A

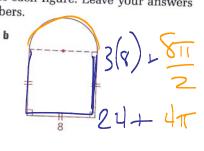

- 1 Find the circumference of the circle. Then approximate the circumference to the nearest hundredth
 - a A circle whose diameter is 21 mm $\stackrel{21\pi}{\approx}_{65.97\overline{544573}}$
 - b A circle whose radius is 6 mm

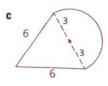
$$C = 12\pi \text{m} \frac{\text{C}}{37.69911184}$$

 ≈ 37.70

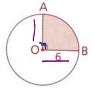

2 Find, to the nearest hundredth, the radius of a circle whose circumference is

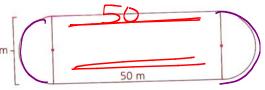
28 = Γ	314 314=dx 99.95=d 49.97=r	177 EdT	88=dr 88/r=d~28.01 14.0ker
2 Et 1.1		2 F.50	. 1.01


3 Find the length of each arc of a circle with a radius of $10.C = 20\pi$



- 4 A bicycle has wheels 30 cm in diameter. Find, to the nearest tenth of a centimeter, the distance that the bicycle moves forward during
 - a) 1 revolution 30TT \approx 9 4.2 an Exact Stringte
 - b) 10 revolutions 300 T ~ 942.5 om Exact
 - c) 1000 revolutions $30000\pi \approx 94,247,800$


40 +6TT



- 6 a Find the length of \widehat{AB} . 4
 - shaded region is a sector.)

7 Find, to the nearest meter, the length of fencing needed to surround the racetrack. C=12TT

