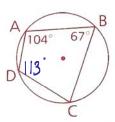
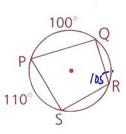
Adv Geo

10-7: Inscribed and Circumscribed Circles

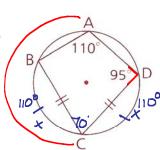

Ms. Kresovic T 30 Apr 2013


1 Given: $\angle A = 104^{\circ}, \angle B = 67^{\circ}$ Find: $\angle D$ and $\angle C$

inscribed grid > oppls supp LD=180-67=113'

2 Given: $\widehat{PS} = 110^{\circ}$, $\widehat{PQ} = 100^{\circ}$

Find: $m \angle R$ and $m \angle P$


3 Given: $\angle A = 110^{\circ}$, $\overline{BC} \cong \overline{CD}$, $\angle D = 95^{\circ}$

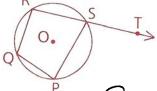
Find: **a** ∠C

d $\widehat{AB} = 80^{\circ}$

4 Given: ⊙O

Prove: $\angle Q \cong \angle PST$

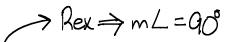
$$\Delta D = \frac{AB}{2} = \frac{AB + BC}{2}$$
 $95' = \frac{AB + 110}{2}$
 $190 = \frac{AB}{2} + 110$
 $80 = \frac{AB}{2}$

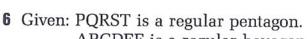

Statements

1.00

J. LQsupp ZRSP

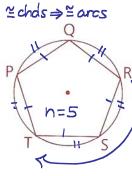
3. LPST SUPP ZRSP

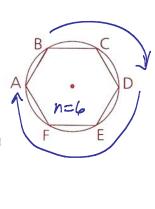

4. LQ = LPST


Reasons

2. Unscribed guad → opp Ls supp 3. stL → suppLS

4. Ls supp to same 1 are =

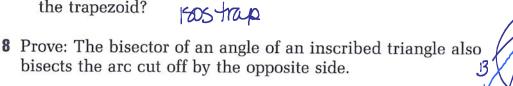

5 Can a parallelogram with a 100° angle be inscribed in a circle?

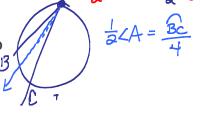


ABCDEF is a regular hexagon.

Find: a mPQ= == 72° d mBD = 2(60)=120

- b mRT-2(72)=144 e mDEA 3 (60) = 180° F
- **c** $\widehat{\text{mAB}} = \frac{360}{l_0} = \frac{360}{l_0}$

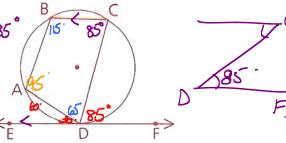




> parallelogram rtLs

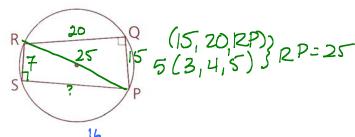
7 a If a rhombus is inscribed in a circle, what must be true about the rhombus? Square

b If a trapezoid is inscribed in a circle, what must be true about the trapezoid?

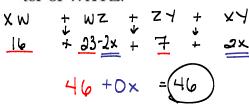

9 Given: $\angle B = 115^{\circ}$, $\widehat{AD} = 60^{\circ}$, $\overline{BC} \parallel \overline{EF}$

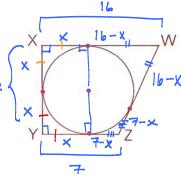
Find: **a** ∠ADC

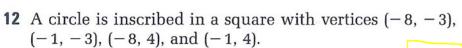
c ∠Cll > Alt int Ls = : 85°


Mscribed quad > L b LCDF LD=180-115=65

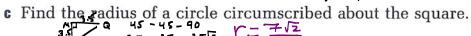
oppes supp

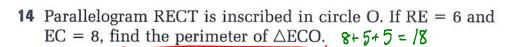


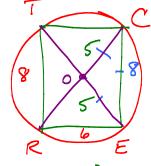

10 PQ = 15, QR = 20, RS = 7, and $\angle Q$ is a right angle. Find PS.



11 Trapezoid WXYZ is circumscribed about circle O. $\angle X$ and $\angle Y$ are right $\angle s$, XW = 16, and YZ = 7. Find the perime- λ ter of WXYZ.



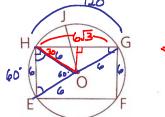



a Find the coordinates of the center of the circle $\begin{pmatrix} -\frac{q}{2} \\ \frac{1}{2} \end{pmatrix}$

b Find the area of the circle. $A_0 = \pi \Gamma^2 = \pi \left(\frac{7}{2}\right)^2 = \frac{49}{4}\pi$

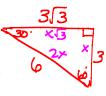
13 Prove: A trapezoid inscribed in a circle is isosceles.

누긒됴

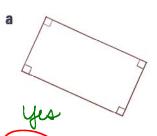

15 Given the figure shown, find $m \angle Q$. Unscrib quad $\Rightarrow opp \angle supp$

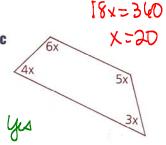
$$x^{2} - 2x + 100 = 180$$

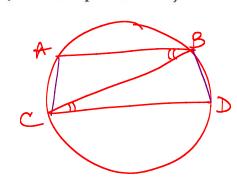
 $x^{2} - 2x - 80 = 0$
 $x = 10$ or $x = 180$


If x=10 then 2Q=100-20=80° If x=-8 then 2Q=100+16=116°

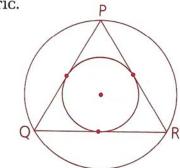
16 Given: \bigcirc O; EFGH is a \square . $\widehat{HG} = 120^{\circ}$, OJ = 6

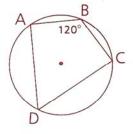

Find: The perimeter of EFGH


 $(100 - 2x)^{\circ}$


17 A quadrilateral can be inscribed in a circle only if a pair of opposite angles are supplementary. Which of the following quadrilaterals can be inscribed in a circle?

68° | 122° | 190 + 180


Prove: Any isosceles trapezoid can be inscribed in a circle. (Hint: See problem 17.)


G: ABICD P: AC = BD

- 1. ABILOD 1. Given 2. ∠ABC= ∠BCD 2. 11 ⇒A.I. ∠S=
- 3. AC = BD 3. Z unscr Ls > Z Os 4. AC = BD 4. Z Os > Z chds
- 5. ABCD 1505 tap 5.2 = sols atother prilip

- 19 Equilateral triangle PQR is inscribed in one circle and circumscribed about another circle. The circles are concentric.
 - a If the radius of the smaller circle is 10, find the radius of the larger circle. 20
 - In general, for an equilateral triangle, what is the ratio of the radius of the inscribed circle to the radius of the circumscribed circle?

20 ABCD is a kite, with $\overline{AB} \cong \overline{BC}$, $\overline{AD} \cong \overline{CD}$, and $m \angle B = 120$. The radius of the circle is 3. Find the perimeter of ABCD.

