10-6: More Angle-Arc Theorems

Review

If the vertex of the angle is the circle	Then use this formula to find the angle's measure:
IN	
ON	
OUT	

Objectives

After studying this section, you will be able to

- · Recognize congruent inscribed and tangent-chord angles
- Determine the measure of an angle inscribed in a semicircle
- Apply the relationship between the measures of a tangent-tangent angle and its minor arc

Theorem 89 If two inscribed or tangent-chord angles intercept the same arc, then they are congruent.

Given: X and Y are inscribed angles intercepting arc AB.

Conclusion: $\angle X \cong \angle Y$

Theorem 91 An angle inscribed in a semicircle is a right angle.

Given: \overline{AB} is a diameter of $\bigcirc O$.

Prove: ∠C is a right angle.

Theorem 90 If two inscribed or tangent-coord angles intercept congruent arcs, then they are congruent.

If \overrightarrow{ED} is the tangent at D and $\overrightarrow{AB}\cong \overrightarrow{CD}$, we may conclude that $\angle P\cong \angle CDE$.

Theorem 92 The sum of the measures of a tangent-tangent angle and its minor arc is 180.

Given: PT and PS are tangent to circle O.

Prove: $m \angle P + m\widehat{TS} = 180$

Problem 1

Given: ⊙O

Conclusion: \triangle LVE $\sim \triangle$ NSE,

 $EV \cdot EN = EL \cdot SE$

Proof

$$\begin{array}{c|cccc}
1 & \bigcirc O & & & 1 \\
2 & \angle V \cong \angle S & & & 2
\end{array}$$

$$\begin{array}{c|cccc}
3 & \angle L \cong \angle N & & 3 \\
4 & \triangle LVE \sim \triangle NSE & & 4
\end{array}$$

$$5 \frac{EV}{SE} = \frac{EL}{EN}$$

$$6 \text{ EV} \cdot \text{EN} = \text{EL} \cdot \text{SE}$$

Problem 2

In circle O, \overline{BC} is a diameter and the radius of the circle is 20.5 mm.

Chord AC has a length of 40 mm. Find AB.

Solution

Since $\angle A$ is inscribed in a semicircle, it is a right angle. By the Pythagorean Theorem,

5

Problem 3

Given: $\odot O$ with \overrightarrow{AB} tangent at B, $\overrightarrow{AB} \parallel \overrightarrow{CD}$

Prove: $\angle C \cong \angle BDC$

Proof

1	\overrightarrow{AB} is tangent to $\bigcirc O$.	1	Given
2	AB ∥ CD	2	Given
3	$\angle ABD \cong \angle BDC$	3	
4	$\angle C \cong \angle ABD$	4	
5	∠C ≅ ∠BDC	5	

10-6: More Angle-Arc Theorems

1 Given: \overrightarrow{X} is the midpt. of \widehat{WY} . Prove: \overrightarrow{ZX} bisects $\angle WZY$.

2 Given: \odot E with diameter \overline{AC} , $\overline{BC} \cong \overline{CD}$ Conclusion: $\triangle ABC \cong \triangle ADC$

3 In \bigcirc P, \overline{BC} is a diameter, AC = 12 mm, and BA = 16 mm. Find the radius of the circle.

4 Given: \overline{PQ} and \overline{PR} are tangent segments. \widehat{QR} = 163°

Find: $\mathbf{a} \angle P$

b ∠PQR

5 Given: A, B, and C are points of contact.

$$\widehat{AB} = 145^{\circ}, \angle Y = 48^{\circ}$$

Find: ∠Z

6 Given: $\widehat{BC} \cong \widehat{ED}$, AB = 8, BC = 4, CD = 9

- **a** Are \overline{BE} and \overline{CD} parallel?
- b Find BE.
- c Is △ACD scalene?

7 Given: \overrightarrow{PY} and \overrightarrow{QW} are tangents. $\overrightarrow{WZ} = 126^{\circ}$, $\overrightarrow{XY} = 40^{\circ}$

$$\widehat{WZ} = 126^{\circ}, \widehat{XY} = 40^{\circ}$$

Find: PQ

8 If $\triangle ABC$ is inscribed in a circle and $\widehat{AC} \cong \widehat{AB}$, tell whether each of the following must be true, could be true, or cannot be true.

- $a \overline{AB} \cong \overline{AC}$
- $\textbf{b} \ \overline{AC} \cong \overline{BC}$
- c \overline{AB} and \overline{AC} are equidistant from the center of the circle.
- $\mathbf{d} \angle \mathbf{B} \cong \angle \mathbf{C}$
- e ∠BAC is a right angle.
- f ∠ABC is a right angle.
- **9** In the figure shown, find $m \angle P$.

10 If \overline{AB} is a diameter of $\bigcirc P$, CB = 1.5 m, and CA = 2 m, find the radius of $\bigcirc P$.

11 The radius of $\odot Z$ is 6 cm and $\widehat{WX} = 120^{\circ}$.

Find: a AX

b The perimeter of $\triangle WAX$

12 M is the midpoint of \widehat{AB} . Find \widehat{mCD} .

- 13 A rectangle with dimensions 18 by 24 is inscribed in a circle. Find the radius of the circle.
- **14** A square is inscribed in a circle with a radius of 10. Find the length of a side of the square.
- **15** Quadrilateral ABCD is inscribed in circle O. AB = 12, BC = 16, CD = 10, and \angle ABC is a right angle. Find the measure of \overline{AD} in simplified radical form.

Circles O and P are tangent at F. \overline{AC} and \overline{CE} are tangent to \overline{OP} at B and D. If $\overline{DFB} = 223^{\circ}$, find \overline{AE} .

17 Given: $\angle S = 88^{\circ}$, $\widehat{QT} = 104^{\circ}$, $\widehat{ST} = 94^{\circ}$, tangent \overline{PQ}

Find: **a** ∠P **b** ∠STQ

18 Given: $\widehat{BC} \cong \widehat{CD}$ Conclusion: $\triangle ABC \sim \triangle AED$

19 Given: \overrightarrow{AC} is tangent at A. $\angle APR$ and $\angle AQR$ are right $\angle s$. R is the midpoint of \widehat{AB} .

Conclusion: $\overline{PR} \cong \overline{RQ}$ (Hint: Draw \overline{AR} .)

20 Given: ΔWXZ is isosceles, with $\overline{WX} \cong \overline{WZ}$.

 \overline{WZ} is a diameter of $\bigcirc O$.

Prove: Y is the midpoint of \overline{XZ} . (Hint: Draw \overline{WY} .)

21 Given: \overline{AC} is tangent to $\bigcirc O$ at A. Conclusion: $\triangle ADC \sim \triangle BDA$

