

10-6: More Angle-Arc Theorems

Review

If the vertex of the angle is the circle	Then use this formula to find the angle's measure:
IN	V = CFD
ON O	∠ = Q
оит 🔷	Z = 0-0

Objectives

After studying this section, you will be able to

- Recognize congruent inscribed and tangent-chord angles
- Determine the measure of an angle inscribed in a semicircle

Apply the relationship between the measures of a tangent-tangent angle and its minor arc

Theorem 89 If two inscribed or tangent-chord angles intercept the same arc, then they are congruent.

Theorem 90 If two inscribed or tangent-chord angles intercept congruent arcs, then they are congruent.

Theorem 91 An angle inscribed in a semicircle is a right angle.

Theorem 92 The sum of the measures of a tangent-tangent angle and its minor arc is 180.

Problem 1

Given: ⊙O

Conclusion: $\triangle LVE \sim \triangle NSE$,

 $EV \cdot EN = EL \cdot SE$

∠L→ VS ∠N→ VS

Proof

$$2 \angle V \cong \angle S$$

$$3 \angle L \cong \angle N$$

$$5 \frac{EV}{SE} = \frac{EL}{EN}$$

$$6 \text{ EV} \cdot \text{EN} = \text{EL} \cdot \text{SE}$$

- 1 Given
- 2 2 inscribed ∠s make same arc > ~Ls
- 3 same as 2
- 4 AA
- 5 ~ /s > corr sds prop
- 6 means extremes product

Problem 2

In circle O, \overline{BC} is a diameter and the radius of the circle is 20.5 mm.

Chord AC has a length of 40 mm. Find AB.

Solution

Since ∠A is inscribed in a semicircle, it is a right angle. By the

Pythagorean Theorem,

Problem 3

Given: $\odot O$ with \overrightarrow{AB} tangent at B, $\overrightarrow{AB} \parallel \overrightarrow{CD}$

Prove: $\angle C \cong \angle BDC$

Proof

- 1 AB is tangent to ⊙O.
- 2 AB | CD
- $3 \angle ABD \cong \angle BDC$
- $4 \angle C \cong \angle ABD$
- $5 \angle C \cong \angle BDC$

- 1 Given
- 2 Given
- 3 1 ⇒ ALT INT LS ≥
- 4 2 inscribed ∠s, samearc ⇒ ≈∠
- = trains

ZABD=2BDC <C=29BR

10-6: More Angle-Arc Theorems

1 Given: X is the midpt. of \widehat{WY} . Prove: \overrightarrow{ZX} bisects $\angle WZY$.

Statements

Reasons

1, X mdpt WY

1. Given

2. Wx = x7

3. ZWZXZZYZX

2. $mdpt \Rightarrow @ \cap s$ 3. $@ \cap s \rightarrow 2 @ inscribed <math>\angle s$

4. Zx bis LWZY

4. 2ºLS → bis

2 Given: $\odot E$ with diameter \overline{AC} , $\overline{BC} \cong \overline{CD}$ Conclusion: $\triangle ABC \cong \triangle ADC$

3 In \bigcirc P, \overline{BC} is a diameter, AC = 12 mm, and BA = 16 mm. Find the radius of the circle.

4(3,45)

: rad = 10 mm

4 Given:
$$\overline{PQ}$$
 and \overline{PR} are tangent segments. $\widehat{QR} = 163^{\circ}$

Find: a
$$\angle P + \widehat{QR} = 180$$
, $\angle P + 163 = 180$, $\angle P = 17^{\circ}$
b $\angle PQR$

D PQ&PR aretan
$$\rightarrow$$
 PQ = PR \rightarrow $\angle Q = \angle R$
 $\angle s \cdot f \triangle = 180$
 $\angle Q + \angle R + \angle P = 180$

5 Given: A, B, and C are points of contact.
$$\widehat{AB} = 145^{\circ}$$
, $\angle Y = 48^{\circ}$

Find:
$$\angle Z$$
 $X+Y+Z=180$
 $180-(48+35)=97$

6 Given:
$$\widehat{BC} \cong \widehat{ED}$$
, $AB = 8$, $BC = 4$, $CD = 9$

- a Are BE and CD parallel? Side split
- **b** Find BE.

7 Given:
$$\overrightarrow{PY}$$
 and \overrightarrow{QW} are tangents. $\overrightarrow{WZ} = 126^{\circ}$, $\overrightarrow{XY} = 40^{\circ}$

Find: PQ

8 If $\triangle ABC$ is inscribed in a circle and $\widehat{AC} \cong \widehat{AB}$, tell whether each of the following must be true, could be true, or cannot be true.

- a $\overline{AB} \cong \overline{AC}$
- **b** $\overline{AC} \cong \overline{BC}$
- \overline{AB} and \overline{AC} are equidistant from the center of the circle.
- d $\angle B \cong \angle C$
- e ∠BAC is a right angle.
- f ∠ABC is a right angle.
- **9** In the figure shown, find $m \angle P$.

10 If \overline{AB} is a diameter of $\bigcirc P$, CB = 1.5 m, and CA = 2 m, find the radius of $\bigcirc P$.

11 The radius of $\bigcirc Z$ is 6 cm and $\widehat{WX} = 120^{\circ}$.

Find: a AX

b The perimeter of △WAX

12 M is the midpoint of \widehat{AB} . Find \widehat{mCD} .

- **13** A rectangle with dimensions 18 by 24 is inscribed in a circle. Find the radius of the circle.
- 14 A square is inscribed in a circle with a radius of 10. Find the length of a side of the square.
- **15** Quadrilateral ABCD is inscribed in circle O. AB = 12, BC = 16, CD = 10, and \angle ABC is a right angle. Find the measure of \overline{AD} in simplified radical form.

Circles O and P are tangent at F. \overline{AC} and \overline{CE} are tangent to \overline{OP} at B and D. If $\overline{DFB} = 223^{\circ}$, find \overline{AE} .

17 Given: $\angle S = 88^{\circ}$, $\widehat{QT} = 104^{\circ}$, $\widehat{ST} = 94^{\circ}$, tangent \overline{PQ}

Find: a ∠P
b ∠STQ

18 Given: $\widehat{BC} \cong \widehat{CD}$ Conclusion: $\triangle ABC \sim \triangle AED$

19 Given: AC is tangent at A. ∠APR and ∠AQR are right ∠s. R is the midpoint of AB.

Conclusion: $\overline{PR} \cong \overline{RQ}$ (Hint: Draw \overline{AR} .)

20 Given: $\triangle WXZ$ is isosceles, with $\overline{WX} \cong \overline{WZ}$.

 \overline{WZ} is a diameter of $\odot O.$

Prove: Y is the midpoint of \overline{XZ} . (Hint: Draw \overline{WY} .)

21 Given: \overline{AC} is tangent to $\bigcirc O$ at A. Conclusion: $\triangle ADC \sim \triangle BDA$

