

10-6: More Angle-Arc Theorems

Review

If the vertex of the angle is the circle	Then use this formula to find the angle's measure:
IN O	
ON 🔵	∠ = 3
OUT OUT	۷° ۲° ۲° ۲° ۲° ۲° ۲° ۲° ۲° ۲° ۲° ۲° ۲° ۲°

Objectives

After studying this section, you will be able to

- · Recognize congruent inscribed and tangent-chord angles
- Determine the measure of an angle inscribed in a semicircle
- Apply the relationship between the measures of a tangent-tangent angle and its minor arc

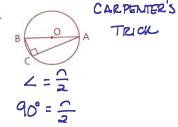
Theorem 89 If two inscribed or tangent-chord angles intercept the same arc, then they are congruent.

Given: X and Y are inscribed angles intercepting arc AB.

Conclusion: $\angle X \cong \angle Y$

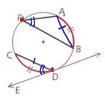
Theorem 91 An angle inscribed in a semicircle is a right angle.

Given: \overline{AB} is a diameter of $\bigcirc O$. Prove: $\angle C$ is a right angle.



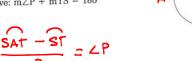
Theorem 90 If two inscribed or tangent-chord angles intercept congruent arcs, then they are congruent.

If \overrightarrow{ED} is the tangent at D and $\widehat{AB}\cong\widehat{CD}$, we may conclude that $\angle P\cong\angle CDE$.



Theorem 92 The sum of the measures of a tangent-tangent angle and its minor arc is 180.

Given: \overline{PT} and \overline{PS} are tangent to circle O. Prove: $m \angle P + m\widehat{TS} = 180$

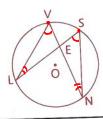


Problem 1

Given: ⊙O

Conclusion: \triangle LVE $\sim \triangle$ NSE,

 $EV \cdot EN = EL \cdot SE$



Proof

$$2 \angle V \cong \angle S$$

 $3 \angle L \cong \angle N$

4 △LVE ~ △NSE

 $5 \frac{EV}{SE} = \frac{EL}{EN}$

 $6 \text{ EV} \cdot \text{EN} = \text{EL} \cdot \text{SE}$

1 Given

2 19 2 inscribed Ls make same are then LSE.

3 same as 2

4 44

5 ~& ⇒ corr. sds. prop.

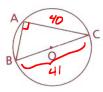
6 means-extremes

Problem 2

In circle O, \overline{BC} is a <u>diameter</u> and the radius

of the circle is 20.5 mm.

Chord AC has a length of 40 mm. Find AB.



Solution

Since ∠A is inscribed in a semicircle, it is a right angle. By the

Pythagorean Theorem,

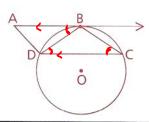
t's a special!

AB=9 mm

Problem 3

Given: $\odot O$ with \overrightarrow{AB} tangent at B, $\overrightarrow{AB} \parallel \overrightarrow{CD}$

Prove: $\angle C \cong \angle BDC$



Proof

1 AB is tangent to ⊙O.

2 AB | CD

 $3 \angle ABD \cong \angle BDC$

 $4 \angle C \cong \angle ABD$

 $5 \angle C \cong \angle BDC$

1 Given

2 Given

311 = aet int Ls≥

4 f 2 inscribed Ls make same are

then ≥ Ls

5-trans.

10-6: More Angle-Arc Theorems

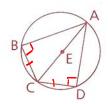
1 Given: \overrightarrow{X} is the midpt. of \widehat{WY} . Prove: \overrightarrow{ZX} bisects $\angle WZY$. Z

Statements

Reasons

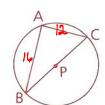
- 1. X mapt Wy
- 1.Given
- 3. Wx = x7
- . S. mapt ⇒ ≥ ∩s
- 3. LWZX PLYXZ 4. Zx bis LWZY
- 3. ≥ aner ⇒ ≥ inscribed <s d. ≥ Ls ⇒ bis

2 Given: $\bigcirc E$ with diameter \overline{AC} , $\overline{BC} \cong \overline{CD}$ Conclusion: $\triangle ABC \cong \triangle ADC$



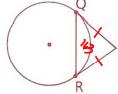
AL

3 In ⊙P, BC is a diameter, AC = 12 mm, and BA = 16 mm. Find the radius of the circle.

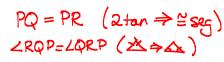


 $AC^{2} + AB^{2} = BC^{2}$ $12^{2} + 16^{2} = BC^{2}$ (12, 16, -)

4 (3, 4, 5) ⇒ BC = 20mm ∴ BP = 10mm **4** Given: \overline{PQ} and \overline{PR} are tangent segments. $\widehat{QR} = 163^{\circ}$



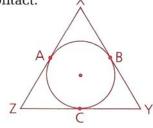
$$17+x+x=180$$
 (Ls triangle=180)
 $2x=163$
 $x=81.5^{\circ}$



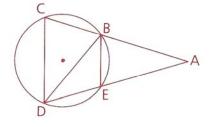
5 Given: A, B, and C are points of contact.

$$\widehat{AB} = 145^{\circ}, \angle Y = 48^{\circ}$$

Find: ∠Z



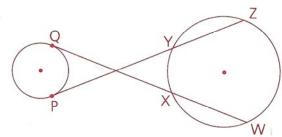
- **6** Given: $\widehat{BC} \cong \widehat{ED}$, AB = 8, BC = 4, CD = 9
 - **a** Are \overline{BE} and \overline{CD} parallel?
 - b Find BE.
 - c Is △ACD scalene?



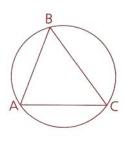
7 Given: \overrightarrow{PY} and \overrightarrow{QW} are tangents. $\overrightarrow{WZ} = 126^{\circ}$, $\overrightarrow{XY} = 40^{\circ}$

$$\widehat{\text{WZ}} = 126^{\circ}, \widehat{\text{XY}} = 40^{\circ}$$

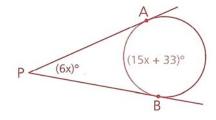
Find: PQ



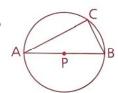
8 If $\triangle ABC$ is inscribed in a circle and $\widehat{AC} \cong \widehat{AB}$, tell whether each of the following must be true, could be true, or cannot be true.



- a $\overline{AB} \cong \overline{AC}$
- **b** $\overline{AC} \cong \overline{BC}$
- \overline{AB} and \overline{AC} are equidistant from the center of the circle.
- d $\angle B \cong \angle C$
- e ∠BAC is a right angle.
- f ∠ABC is a right angle.
- **9** In the figure shown, find $m \angle P$.



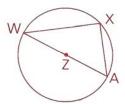
10 If \overline{AB} is a diameter of $\bigcirc P$, CB = 1.5 m, and CA = 2 m, find the radius of $\bigcirc P$.



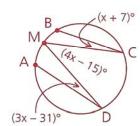
11 The radius of $\bigcirc Z$ is 6 cm and $\widehat{WX} = 120^{\circ}$.

Find: a AX

b The perimeter of △WAX

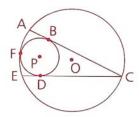


12 M is the midpoint of \widehat{AB} . Find \widehat{mCD} .



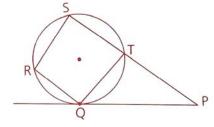
- 13 A rectangle with dimensions 18 by 24 is inscribed in a circle. Find the radius of the circle.
- 14 A square is inscribed in a circle with a radius of 10. Find the length of a side of the square.
- **15** Quadrilateral ABCD is inscribed in circle O. AB = 12, BC = 16, CD = 10, and \angle ABC is a right angle. Find the measure of \overline{AD} in simplified radical form.

Circles O and P are tangent at F. \overline{AC} and \overline{CE} are tangent to \overline{OP} at B and D. If $\overline{DFB} = 223^{\circ}$, find \overline{AE} .

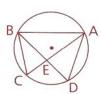


17 Given: $\angle S = 88^{\circ}$, $\widehat{QT} = 104^{\circ}$, $\widehat{ST} = 94^{\circ}$, tangent \overline{PQ}

Find: a ∠P b ∠STQ

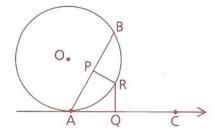


18 Given: $\widehat{BC} \cong \widehat{CD}$ Conclusion: $\triangle ABC \sim \triangle AED$



19 Given: AC is tangent at A. ∠APR and ∠AQR are right ∠s. R is the midpoint of AB.

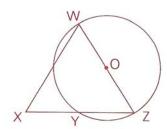
Conclusion: $\overline{PR} \cong \overline{RQ}$ (Hint: Draw \overline{AR} .)



20 Given: $\triangle WXZ$ is isosceles, with $\overline{WX} \cong \overline{WZ}$.

 \overline{WZ} is a diameter of $\odot O.$

Prove: Y is the midpoint of \overline{XZ} . (Hint: Draw \overline{WY} .)



21 Given: \overline{AC} is tangent to $\bigcirc O$ at A. Conclusion: $\triangle ADC \sim \triangle BDA$

