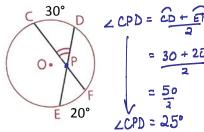
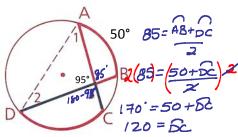
10-5: Angles Relates to a Circle

Objectives

After studying this section, you will be able to

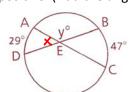
- Determine the measures of central angles
- Determine the measures of inscribed and tangent-chord angles
- Determine the measures of chord-chord angles
- Determine the measures of secant-secant, secant-tangent, and tangent-tangent angles


When the vertex of the angle is the **CENTER** of the circle



m central
$$L = m$$
 arc $\angle AOB = AB = 50^{\circ}$

When the vertex of the angle is IN the circle (but not the center)

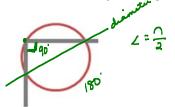


chord-chord or sec – sec angles

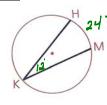
Notes: Vertical angles are congruent. The angle measure is the AVERAGE of the arcs. If a trend is IN, then it's perceived as a positive. (Add the angles.)

Problem 2

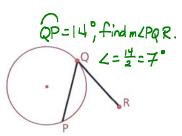
Find y.
$$\times$$
 supp y $X = \frac{29 + 417}{2} = \frac{7}{2} = 39$


Problem 3

a Find x.



$$\times = \frac{88+27}{2} = \frac{115}{2} = 57.5^{\circ}$$


When the vertex of the angle is \underline{ON} the circle

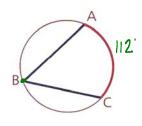
Remember the Carpenter's trick.

∠HKM is an inscribed angle.

∠PQR is a tangent-chord angle.

sec-sec:

Example 1

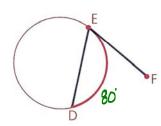

Given:
$$\widehat{mAC} = 112$$

Find: m∠B

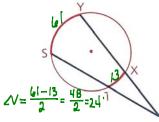
$$m \angle B = \frac{1}{2}(m\widehat{AC})$$

$$= \frac{1}{2}(|12|)$$

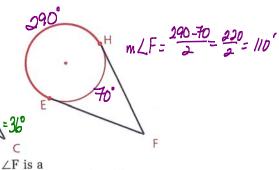
$$= 56^{\circ}$$


tan-chord:

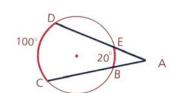
Example 2


Given: FE is tangent at E.

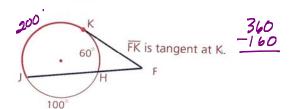
 $\widehat{\text{mDE}} = 80$


Find: m∠DEF =40°

∠V is a


∠C is a

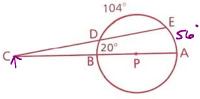
secant-secant angle. secant-tangent angle. tangent-tangent angle.


Note: If a trend is OUT, then it's perceived as a negative. (Subtract the angles.)

Example 1

Find
$$m \angle A$$
.
 $m \angle A = \frac{1}{2}(\widehat{mCD} - \widehat{mBE})$

Example 2

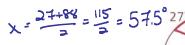

Example 3 Find m∠Q.

Problem 1

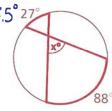
Given:
$$\overline{AB}$$
 is a diameter of $\bigcirc P$.
 $\widehat{BD} = 20^{\circ}$, $\widehat{DE} = 104^{\circ}$

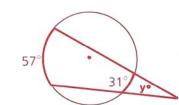
Find: m∠C

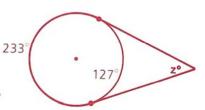
$$m \angle C = \frac{56-20}{2} = \frac{36}{2} = 8^{\circ}$$

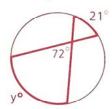


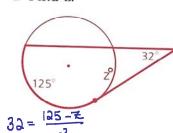
$$y = \frac{57-31}{2} = \frac{36}{2} = 13^{\circ}$$

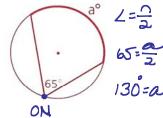

$$Z = \frac{233 - 127}{2} = \frac{106}{2} = 53^{\circ}$$


Problem 3

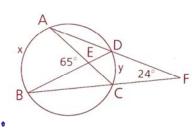

a Find x.







Problem 4



Problem 5

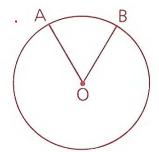
Find mÂB and mĈD. $24 = \frac{x-y}{2}$

Summary

If the vertex of the angle is the circle	Then use this formula to find the angle's measure:
IN ⇒ +	$\angle = \frac{1}{2} \rightarrow \text{angle} = \frac{\text{anc+anc}}{2}$
ON	$\angle = \frac{\alpha}{3} \rightarrow \text{angle} = \frac{\text{anc}}{2}$
OUT → -	$\angle = \frac{\bigcap -\bigcap}{2} \rightarrow \text{angle} = \frac{\text{anc-anc}}{2}$

Name

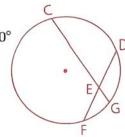
Adv Geo -


Ms. Kresovic T 16 Apr 13

10-5: Angles Relates to a Circle

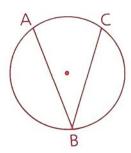
1 Vertex at center:

Given: $\widehat{AB} = 62^{\circ}$

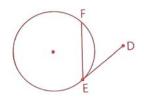

Find: m∠O

2 Vertex inside:

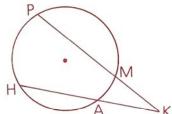
Given:
$$\widehat{CD} = 100^{\circ}$$
, $\widehat{FG} = 30^{\circ}$


Find: m∠CED

3 Vertex on:


a Given: $\widehat{AC} = 70^{\circ}$

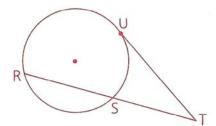
Find: m∠B


b Given: \overline{DE} is tangent at E. $\widehat{EF} = 150^{\circ}$

Find: m∠DEF

4 Vertex outside:

a

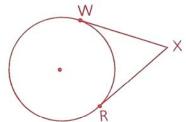


Given: $\widehat{HP} = 120^{\circ}$,

 $\widehat{AM} = 36^{\circ}$

Find: m∠K

b

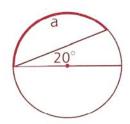

Given: TU is tangent at U.

$$\widehat{RU} = 160^{\circ}$$
,

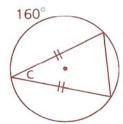
$$\widehat{SU} = 60^{\circ}$$

Find: m∠T

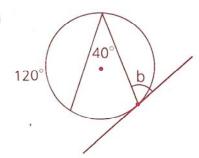
C

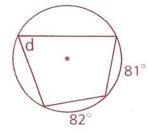

Given: W and R are points of contact.

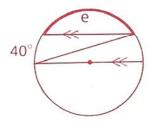
$$\widehat{WR} = 140^{\circ}$$


Find: m∠X

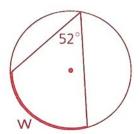
5 Find the measure of each angle or arc that is labeled with a letter.

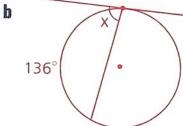

a

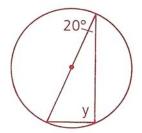

C


b

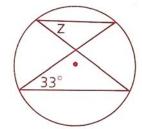
d

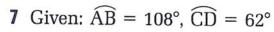



6

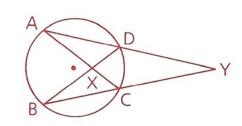

6 Find the measure of each angle or arc that is labeled with a letter.

8

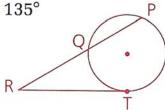




C

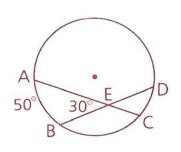


d



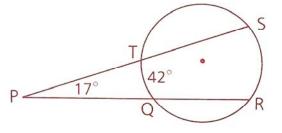
Find: $\angle AXB$ and $\angle Y$

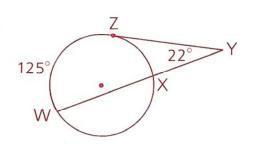
8 Given: $\widehat{TP} = 170^{\circ}$, $\widehat{PQ} = 135^{\circ}$


Find: ∠R

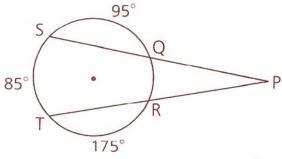
9 Given: $\angle AEB = 30^{\circ}$,

$$\widehat{AB} = 50^{\circ}$$

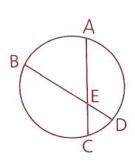

Find: \widehat{CD}


10 Given: $\angle P = 17^{\circ}$, $\widehat{TQ} = 42^{\circ}$

$$\widehat{TQ} = 42^{\circ}$$

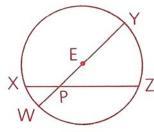

Find: SR

11 If $\angle Y = 22^{\circ}$, $\widehat{WZ} = 125^{\circ}$, and \widehat{YZ} is tangent at Z, find \widehat{XZ} .

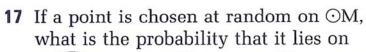


12 If $\widehat{ST} = 85^{\circ}$, $\widehat{SQ} = 95^{\circ}$, and $\widehat{TR} = 175^{\circ}$, find $\angle P$.

13 Given: $\widehat{AB} = 85^{\circ}$,


Find: ∠AED

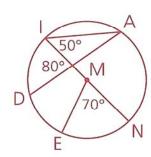
14 Given: \overline{WY} is a diameter of $\bigcirc E$. $\overline{WX} = 50^{\circ}$, $\angle XPY = 120^{\circ}$


$$\widehat{\text{WX}} = 50^{\circ}, \angle \text{XPY} = 120^{\circ}$$

Find: WZ

15 A circle is divided into three arcs in the ratio of 3:4:5. A tangent-chord angle intercepts the largest of the three arcs. Find the measure of the tangent-chord angle.

16 An inscribed angle intercepts an arc that is $\frac{1}{9}$ of the circle. Find the measure of the inscribed angle.



a IAN

 $\mathbf{b} \ \widehat{AN}$

c ÎD

d ÎE

