Name Adv Geo 10-5, Day 2

18 Given: VQ is tangent to ⊙O at Q. QS is a diameter of ⊙O.

$$\widehat{PQ} = 115^{\circ}; \angle RPS = 36^{\circ}$$

- c SR -72°
- d QR IDE
- e ∠QPR -54°
- f ∠QPS = 90
- g ∠QTP =93.5

- k ∠VQS = 90
- I ZQOP = 115

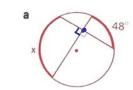
19 Given $m \angle P = 60$ and $\widehat{mPSR} = 128$, find $m\angle Q$, $m\angle R$, and $m\angle S$.

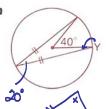
LQ = 1 128 = 64

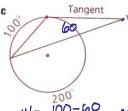
Inscribed guad > opp Ls supp

20 The major arc cut off by two tangents to a circle from an outside 5x

128

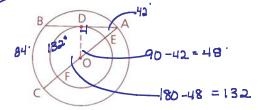

the tangents. $\frac{5}{3}$ x + $\frac{3}{3}$ x = 360.


$$\frac{8}{3} \times = 360$$


$$\times = 360 \left(\frac{3}{8}\right) = |35|$$

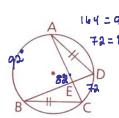

 $24 = \frac{225 - 135}{2} = \frac{90}{2} = 45$

21 Find the measure of each arc or angle labeled with a letter.



18D = 48 + K 131=X

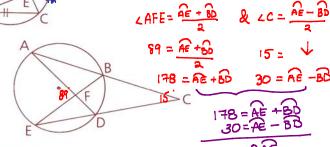
22 Given circles concentric at O, AB tangent to the inner circle, and $\widehat{BC} = 84^{\circ}$, find


the measures of $\angle A$, \widehat{DE} , and \widehat{DF} .

mLA = \$ BC = 42.

23 Given:
$$\widehat{AB} = 92^{\circ}$$
,
 $\angle AEB = 82^{\circ}$

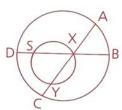
Find: AD



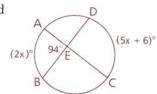
$$360 - (92 + 72)$$

$$360 - 164 = \frac{196}{2} = 98^{\circ}$$

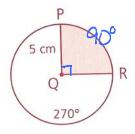
24 Given:
$$\angle AFE = 89^{\circ}$$
, $\angle C = 15^{\circ}$


Find: AE and BD 1040 740

$$89 = \frac{AE + 60}{2}$$
 15 = $\sqrt{88} = AE + 60$ 30 = $AE + 60$ 178 = $AE + 60$


25 Given:
$$\widehat{SY} = 112^{\circ}$$
, $\widehat{DC} = 87^{\circ}$

Find: AB


then
$$89 = \frac{104 + BD}{2}$$

26 If
$$\widehat{DC} = (5x + 6)^{\circ}$$
, $\widehat{AB} = (2x)^{\circ}$, and $\angle AEB = 94^{\circ}$, find \widehat{AB} .

28
$$\triangle$$
ABC is inscribed in a circle (all sides are chords), AB = 12, AC = 6, and BC = $6\sqrt{3}$. Find mBC.

nearest tenth.

b. Find the exact area of the shaded region, and estimate it to the nearest tenth.

$$\frac{90}{360} 25\pi = \frac{1}{4} 25\pi = \boxed{\frac{25}{4}\pi} \times 19.6$$

c. Find the exact length of and PR, and estimate it to the nearest tenth.

$$\frac{90}{360}$$
 IDT = $\frac{1}{4}$ IDT = $\frac{5}{3}$ T ≈ 7.9