AMDG

Name Ms. Kresovic
Adv Geo —period ___ F 12 Apr 213
10.4 Secants and Tangents

Objectives

After studying this section, you will be able to

= Identify secant and tangent lines

® Identify secant and tangent segments

® Distinguish between two types of tangent circles

® Recognize common internal and common external tangents

Definition A secant is a line that intersects a circle at d

exactly two points. (Every secant contains
a chord of the circle.)

Definition A tangent is a line that intersects a circle at exactly
one point. This point is called the point of tangency
or point of contact. ~ —{

Postulate A tangent line is perpendicular to the radius drawn
to the point of contact.

Postulate If a line is perpendicular to a radius at its outer
endpoint, then it is tangent to the circle.

Definition A tangent segment is the part of a tangent line be- e T
tween the point of contact and a point outside the P"" - , i

circle.

Definition A secant segment is the part of a secant line
that joins a point outside the circle to the |
farther intersection point of the secant External part |\ Q

and the circle. = N .

—— Secant segment —

Definition The external part of a secant segment is the part of
a secant line that joins the outside point to the

nearer intersection point.

Theorem 85 If two tangent segments arc drawn fo a circle jrom
an external point, then those segments are congru-
ent. (Two-Tangent Theorem)

Given: ©0; X
PX and PY are tangent segments.
Prove: PX = PY
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Tangent Circles

Definition Tangent circles are circles that intersect each other

at exactly one point.

ngmon Tangents

(PE is the line of centers.

g fs a common internal tangent.
AB is a common external tangent.

Problem 1 Given: XY is a common internal tan-
gent to ® P and Q at X and Y.
XS is tangent to OP at S.
YT is tangent to OQ at T.

Conclusion: XS = YT

Proof

1 XS is tangent to OP.
YT is tangent to ©Q.
2 XY is tangent to ® P

and Q.
3 XS=XY
4 XY=YT
5 XS=YT

Problem 2 TP is tangent to circle O at T.
The radius of circle O is 8 mm.

Tangent segment TP is 6 mm long.

Find the length of OP.

Solution

1 Given

2 Given
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Common-Tangent Procedure

1 Draw the segment joining the centers.
2 Draw the radii to the points of contact.

3 Through the center of the smaller circle, draw a line
parallel to the common tangent.

4 Observe that this line will intersect the radius of the
larger circle (extended if necessary) to form a rectangle
and a right triangle.

5 Use the Pythagorean Theorem and properties of a
rectangle.

Problem 3 A circle with a radius of 8 cm is ex-
ternally tangent to a circle with a ra-
dius of 18 cm. Find the length of a
common external tangent.

Solution Xz_\_ \ DZ: Qp(az
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Problem 4 A walk-around problem:
'\/ Given: Each side of quadrilateral
/@g ABCD is tangent to the circle.
\b\ey\fv AB = 10, BC = 15, AD = 18
P® Find: CD 2

a2+a,n$>62§%\5

CD = 15X +18=1D+X

QD = 1S+/8-/0
D= 1S+8 5(23) _
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Homework 10.4 Secants and Tangents

1 The radius of ©A is 8 cm. A
Tangent segment BC is 15 cm long. 8
Find the length of AC.
&
B IS

2 Concentric circles with radii 8 and 10
have center P,
XY is a tangent to the inner circle and is
a chord of the outer circle.

Find XY. (Hint: Draw PX and PY.)

2 () =[]
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b OP and GR are internally tangent at O.
P is at (8, 0) and R is at (19, 0). g.9). 9
a Find the coordinates of Q and S. ok P /IR S| x-axis
b Find the length of QR. Q-1 =3 (IQb N 127
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6 AB and AC are tangents to ©0,> AB =AC % 0
and OC = 5x. Find OC. A ]Sx 5
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7 Given: CE is a common internal tangent
to circles A and B at C and E.

Prove: a LA = /B
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8 Given: QR and QS are tangent to OP at
points R and S.
Prove: PQ L RS (Hint: This can be
proved in just a few steps.)
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10 QP is tangent to each side of ABCD.
AB = 20, BC = 11, and DC = 14. Let

AQ = x and find AD.
Han = "-isaﬁo

AD=AQ +OD
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STANCEEER

AD - 23
a Find the radius of OP. N
b Find the slope of the tangent to OP at

Q\Mb point Q.
: Q 4,9
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12 Two concentric cikcles have radii 3 and 7. Find, to the nearest
hundredth, the length of a chord of the larger circle that is
tangent to the smaller circle. (See problem 2 for a diagram.)
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13 The centers of two circles of radii 10 cm and 5 cm are 13 cm

apart,
a Find the length of a common external tangent. (Hint: Use the
common-tangent procedure.) |7
b Do the circles intersect? Yes (13<15) g
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14 The centers of two ci i ii 3 and 5 are 10 units apart.
Find the length of a/common internal tangent (Hint: Use the

common-tangent procedure.)

15 Given: PT is tangent to ® Q and R at T
points S and T.

Conclusion: % = %
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16 Given: Tangent ® A, B, and C,
AB = 8, BC = 13, AC = 11
Find: The radii of the three ® (Hint:

This is a walk-around problem.) R’



17 The radius of ®0 is 10,

The secant segment PX measures 21 and
is 8 units from the center of the ©.

a Find the external part (PY) of the se-
cant segment.

b Find OP.

18 Civen: AABC is isosceles, with base BC.
Conclusion: BR = RC

19 If two of the seven circles are chosen at
random, what is the probability that the
chosen pair are

a Internally tangent?
b Externally tangent?
¢ Not tangent?




