AMDG					
Name Ms. Kresovic Adv Geo – period F 12 Apr 213 10.3 Homework Check: Any talking will result in a 0 grade. Use your homework. You are not provided time to complete the exercises. Copy the work from your homework. You have 5 minutes. Each problem is ¼ point, totaling 3 points.					
2 Given: Two concentric circles with center O; ∠BOC is acute. a Name a major arc of the smaller circle. b Name a minor arc of the larger circle. c What is mBC + mPQ? d Which is greater, mBC or mPQ? e Is BC congruent to QR? NOT ≅ OS			2a 2b 2c 2d 2e 3b	PR OR DRP 30 OR AB 180° m PQ No	
6 Given: $\bigcirc D$, $\angle B \cong \angle C$ Conclusion: $\widehat{AB} \cong \widehat{AC}$ 8 In circle E, find each of the following. 8 mAD 8 mAD 8 mAD 130°		52	130°		
Statements	Reasons	c ano o	3e	220°	
1. ⊙D, ∠B ≅ ∠C	1. Given	Oh What fractional part of a circle is an arc th	at measu	ros 2402 240 2	
2. $\overline{AB} \cong \overline{AC}$	2.	9b What fractional part of a circle is an arc that measures 240? 340 (3) 10a Find the measure of an arc that is 3/5 of its circle.			
3. $\widehat{AB} \cong \widehat{AC}$	3. 2 chds ⇒ 2 aras	216			
		5 = 360			
AMDG Name					
	entric circles with center O;	В	2a		
∠BOC is acute. a Name a major arc of the smaller			2b		
b Name a minor arc of the larger circle.			2c		
c What is mBC + mPQ? d Which is greater, mBC or mPQ?			2d		
e Is BC congruent to QR?			2e		
6 Given: $\bigcirc D$, $\angle B \cong \angle C$ Conclusion: $\widehat{AB} \cong \widehat{AC}$		3 In circle E, find each of the following. b mAD e mADC	3b		
Statements	Reasons		3e		
1. \bigcirc D, \angle B \cong \angle C	3.	0			

2. $\overline{AB} \cong \overline{AC}$

3. $\widehat{AB} \cong \widehat{AC}$

4.

3.

9b What fractional part of a circle is an arc that measures 240?

10a Find the measure of an arc that is 3/5 of its circle.

Name ___

Adv Geo – period 2

Ms. Kresovic F 12 Apr 213

10.4 Secants and Tangents

Objectives

After studying this section, you will be able to

- Identify secant and tangent lines
- Identify secant and tangent segments
- Distinguish between two types of tangent circles
- Recognize common internal and common external tangents

Definition

A secant is a line that intersects a circle at, exactly two points. (Every secant contains a chord of the circle.)

Definition

A tangent is a line that intersects a circle at exactly one point. This point is called the point of tangency or point of contact.

Postulate

A tangent line is perpendicular to the radius drawn to the point of contact.

Postulate

If a line is perpendicular to a radius at its outer endpoint, then it is tangent to the circle.

Definition

A tangent segment is the part of a tangent line between the point of contact and a point outside the

circle.

Definition

A secant segment is the part of a secant line that joins a point outside the circle to the farther intersection point of the secant and the circle.

Secant segment

External part

Definition

The external part of a secant segment is the part of a secant line that joins the outside point to the nearer intersection point.

Theorem 85

If two tangent segments are drawn to a circle from an external point, then those segments are congruent. (Two-Tangent Theorem)

Given: ⊙O;

 \overline{PX} and \overline{PY} are tangent segments.

Prove: $\overline{PX} \cong \overline{PY}$

$$3 \cdot \bigcirc \Rightarrow \cong$$

5. AOXP = AOYP 6. PX = PY

5. HL 6, CACTO

Tangent Circles

Definition

Tangent circles are circles that intersect each other at exactly one point.

Common Tangents

PQ is the line of centers.

XY is a common internal tangent.

AB is a common external tangent.

Problem 1

Given: \overline{XY} is a common internal tangent to s P and Q at X and Y. \overline{XS} is tangent to oP at S.

 $\overline{\text{YT}}$ is tangent to $\bigcirc Q$ at T.

Conclusion: $\overline{XS} \cong \overline{YT}$

Proof

1 XS is tangent to ⊙P.	1 Given
\overline{YT} is tangent to $\bigcirc Q$.	
2 XY is tangent to © P and Q.	2 Given
$3 \overline{XS} \cong \overline{XY}$	3
$4 \ \overline{XY} \cong \overline{YT}$	4
$5 \ \overline{\text{XS}} \cong \overline{\text{YT}}$	5

Problem 2

 \overrightarrow{TP} is tangent to circle O at T. The radius of circle O is 8 mm. Tangent segment \overrightarrow{TP} is 6 mm long. Find the length of \overrightarrow{OP} .

Solution

Common-Tangent Procedure

- 1 Draw the segment joining the centers.
- 2 Draw the radii to the points of contact.
- 3 Through the center of the smaller circle, draw a line parallel to the common tangent.
- 4 Observe that this line will intersect the radius of the larger circle (extended if necessary) to form a rectangle and a right triangle.
- 5 Use the Pythagorean Theorem and properties of a rectangle.

Problem 3

A circle with a radius of 8 cm is externally tangent to a circle with a radius of 18 cm. Find the length of a common external tangent.

Solution

Problem 4

A walk-around problem:

Given: Each side of quadrilateral ABCD is tangent to the circle. AB = 10, BC = 15, AD = 18

Find: CD

Adv Geo – period _____

Homework 10.4 Secants and Tangents

The radius of ⊙A is 8 cm.
 Tangent segment BC is 15 cm long.
 Find the length of AC.

2 Concentric circles with radii 8 and 10 have center P.

XY is a tangent to the inner circle and is a chord of the outer circle.

Find \overline{XY} . (Hint: Draw \overline{PX} and \overline{PY} .)

3 Given: \overline{PR} and \overline{PQ} are tangents to $\bigcirc O$ at R and Q.

Prove: \overrightarrow{PO} bisects $\angle RPQ$. (Hint: Draw \overline{RO} and \overline{OQ} .)

Conclusion: s | m

1. Giren

$$a. tan \Rightarrow 1$$

3.2 lins I same live ⇒ 11

- a Find the coordinates of Q and S.
- **b** Find the length of \overline{QR} . 19 16 = 3

6 \overline{AB} and \overline{AC} are tangents to $\bigcirc O$, and OC = 5x. Find OC.

- 7 Given: CE is a common internal tangent to circles A and B at C and E.
 - Prove: $\mathbf{a} \angle \mathbf{A} \cong \angle \mathbf{B} \leftarrow \mathbf{no}$ choice

$$\label{eq:bound} \textbf{b} \ \frac{AD}{BD} = \frac{CD}{DE}$$

- 1. CE comm unt ten GA+BQC & E 1. Quen
- 2. ACLCE & BE 1CE
 - 2. tan => 1
- 3. LACERL BED NILS
- 3. ⊥⇒~+८ み トナレs コピレs

4. CACE ELBED

- S. VertLs
- 5. 41262 G. AACD ~ ABED
- G.AA~
- - 8 Given: QR and QS are tangent to ⊙P at points R and S.
 - Prove: PQ \(\text{TRS} \) (Hint: This can be proved in just a few steps.)
- 1. QR+QS tan OPQR&S
- 2. PR = PS
- 3. RQ =QS
- 4. PQ 1 RS

7.~&>=L5

8.~/s) > prop sols

7. LA WLB

- 10 OP is tangent to each side of ABCD.
 - AB = 20, BC = 11, and DC = 14. Let
 - AQ = x and find AD.
- AD= x + 14- [11-(20-x)]

- 2٥
- 14-[11-(20-x)

- - Find the radius of OP.

 | Sul = opp & recop | y-axis |
 | Find the slope of the tangent to OP at
- $RQ = \sqrt{\Delta x^2 + \Delta y^2} = \sqrt{(4+2)^2 + (9-5)^2} = \sqrt{34+14}$ $= \sqrt{52} = \sqrt{4\cdot13} = 2\sqrt{13}$
- $mPQ = \frac{\Delta Y}{\Delta X} = \frac{9-5}{4+2} = \frac{4}{6} = \frac{2}{3}$: opp, reap = $-\frac{3}{2}$
- Q (4, 9)
- 12 Two concentric circles have radii 3 and 7. Find, to the nearest hundredth, the length of a chord of the larger circle that is tangent to the smaller circle. (See problem 2 for a diagram.)

- $x^{2}+3^{2}=7^{2}$ (Pyth)
- -x is 1/2 chard: chord 2 (2170) = (4170

- 13 The centers of two circles of radii 10 cm and 5 cm are 13 cm apart.
 - a Find the length of a common external tangent. (Hint: Use the /2 common-tangent procedure.)
 - **b** Do the circles intersect?

10

- 14 The centers of two circles with radii 3 and 5 are 10 units apart. Find the length of a common internal tangent. (Hint: Use the common-tangent procedure.)
- 15 Given: \overline{PT} is tangent to \circledcirc Q and R at points S and T.

16 Given: Tangent © A, B, and C, AB = 8, BC = 13, AC = 11

Find: The radii of the three ③ (Hint: This is a walk-around problem.)

17 The radius of ⊙O is 10.
The secant segment PX measures 21 and is 8 units from the center of the ⊙.

a Find the external part (PY) of the secant segment.

b Find OP.

18 Given: $\triangle ABC$ is isosceles, with base \overline{BC} .

Conclusion: $\overline{BR} \cong \overline{RC}$

- 19 If two of the seven circles are chosen at random, what is the probability that the chosen pair are
 - a Internally tangent?
 - b Externally tangent?
 - c Not tangent?

