Name	AMDG		Ms. Kresovic
Adv Geo – period 10.3 Homework Check: Any talking will result in a 0 gr	rade. Use vour homework. You are not provided	d time to c	F 12 Apr 213
Copy the work from your homework. You have 5 min	•		ompiece are exercises.
 2 Given: Two concentric circles with center O; ∠BOC is acute. a Name a major arc of the smaller circle. b Name a minor arc of the larger circle. c What is mBC + mPQ? d Which is greater, mBC or mPQ? e Is BC congruent to QR? 	A R C	2a 2b 2c 2d 2e	180° PQ No
6 Given: $\bigcirc D$, $\angle B \cong \angle C$	3 In circle E, find each of the following.	3b	

Conclusion: \widehat{AB}	≅ AC B D C	b mAD e mADC		/30°
Statements	Reasons		3e	
1. \bigcirc D, \angle B \cong \angle C	1. Given	90		226
2. $\overline{AB} \cong \overline{AC}$	2. 🛕 → 🖄	9b What fractional part of a circle is an arc th	at measu	res 240? 🚜
3. $\widehat{AB} \cong \widehat{AC}$	3. ≅ chds⇒≅∩S	10a Find the measure of an arc that is 3/5 of	its circle.	
		5 360		

AMDG

Name	

Adv Geo – period _____

Ms. Kresovic F 12 Apr 213

10.3 Homework Check: Any talking will result in a 0 grade. Use your homework. You are not provided time to complete the exercises.

Copy the work from your homework. You have 5 minutes. Each problem is ¼ point, totaling 3 points.

∠BOC is a Name a major circle. b Name a minor c What is mBC	arc of the smaller arc of the larger circle. + mPQ? er, mBC or mPQ?	A P O R C	2a 2b 2c 2d 2e	
6 Given: ⊙D, ∠B = Conclusion: ÂB		3 In circle E, find each of the following. b mAD e mADC	3b	
Statements	Reasons		3e	
1. ⊙D, ∠B ≅ ∠C	3.			
2. $\overline{AB} \cong \overline{AC}$	4.	9b What fractional part of a circle is an arc t	hat measu	res 240?
3. $\widehat{AB} \cong \widehat{AC}$	3.	10a Find the measure of an arc that is 3/5 or	its circle.	

Name _

Adv Geo – period

Ms. Kresovic F 12 Apr 213

10.4 Secants and Tangents

Objectives

After studying this section, you will be able to

- Identify secant and tangent lines
- Identify secant and tangent segments
- Distinguish between two types of tangent circles
- Recognize common internal and common external tangents

Definition

A secant is a line that intersects a circle at exactly two points. (Every secant contains a chord of the circle.)

Definition

A tangent is a line that intersects a circle at exactly one point. This point is called the point of tangency or point of contact.

Postulate

A tangent line is perpendicular to the radius drawn to the point of contact.

Postulate

If a line is perpendicular to a radius at its outer endpoint, then it is tangent to the circle.

Definition

A tangent segment is the part of a tangent line between the point of contact and a point outside the circle.

Definition

A secant segment is the part of a secant line that joins a point outside the circle to the farther intersection point of the secant and the circle.

Definition

The external part of a secant segment is the part of a secant line that joins the outside point to the nearer intersection point.

Theorem 85

If two tangent segments are drawn to a circle from an external point, then those segments are congruent. (Two-Tangent Theorem)

Given: ⊙O;

 \overline{PX} and \overline{PY} are tangent segments.

Prove: $\overline{PX} \cong \overline{PY}$

2. LOYPYZOXPHZS 2. Fan > r+LS

$$3. \bigcirc \Rightarrow \cong rad$$

Tangent Circles

Definition

Tangent circles are circles that intersect each other at exactly one point.

Common Tangents

PQ is the line of centers.

XY is a common internal tangent.

AB is a common external tangent.

Problem 1

Given: $\overline{X}\overline{Y}$ is a common internal tangent to \odot P and Q at X and Y. $\overline{\text{XS}}$ is tangent to \odot P at S.

 \overline{YT} is tangent to $\bigcirc Q$ at T.

Conclusion: $\overline{XS} \cong \overline{YT}$

Proof

1	\overline{XS} is tangent to $\bigcirc P$.	
	\overline{YT} is tangent to $\bigcirc Q$.	

- 2 XY is tangent to © P
- and Q. $3 \overline{XS} \cong \overline{XY}$
- $4 \ \overline{XY} \cong \overline{YT}$ $5 \overline{XS} \cong \overline{YT}$
- 1 Given
- 2 Given

Problem 2

TP is tangent to circle O at T. The radius of circle O is 8 mm. Tangent segment TP is 6 mm long. Find the length of \overline{OP} .

Solution

Common-Tangent Procedure

- 1 Draw the segment joining the centers.
- 2 Draw the radii to the points of contact.
- 3 Through the center of the smaller circle, draw a line parallel to the common tangent.
- 4 Observe that this line will intersect the radius of the larger circle (extended if necessary) to form a rectangle and a right triangle.
- 5 Use the Pythagorean Theorem and properties of a rectangle.

Problem 3

A circle with a radius of 8 cm is externally tangent to a circle with a radius of 18 cm. Find the length of a common external tangent.

Solution

$$x^{2} + 10^{2} = 26^{2}$$

$$2(5, 12, 13)$$

Problem 4

Test problem:

A walk-around problem:

Given: Each side of quadrilateral ABCD is tangent to the circle. AB = 10, BC = 15, AD = 18

Find: CD

$$CD = (15-x) + (18 - (10-x))$$

$$= 15-x + 18 - 10 + x$$

$$= 15 + 8$$

$$= 23$$

Adv Geo – period __/__

Homework 10.4 Secants and Tangents

1 The radius of ⊙A is 8 cm. Tangent segment BC is 15 cm long. Find the length of AC.

2 Concentric circles with radii 8 and 10 have center P.

 \overline{XY} is a tangent to the inner circle and is a chord of the outer circle.

Find \overline{XY} . (Hint: Draw \overline{PX} and \overline{PY} .)

3 Given: PR and PQ are tangents to ⊙O at R and Q.

Prove: PO bisects ∠RPQ. (Hint: Draw RO and OQ.)

Conclusion: s | m

Reason s Statements 1, PR+FQ tanin 00 1. given

s. Drow OR 400

3. OR = 00

3. O⇒=rad

4. LPRO&LPGONTES4. tan >NL

1. AC diamotrofOB 1. Given s Intanto OA+OC

2. ACISARCIM 2. tan=) 1

- 5 OP and OR are internally tangent at O. P is at (8, 0) and R is at (19, 0).
 - a Find the coordinates of Q and S.
 - **b** Find the length of \overline{QR} .

6 \overline{AB} and \overline{AC} are tangents to $\bigcirc O$, and OC = 5x. Find OC.

7 Given: \overline{CE} is a common internal tangent to circles A and B at C and E.

Prove: $\mathbf{a} \angle \mathbf{A} \cong \angle \mathbf{B} \leftarrow \text{Nochoice if stopping}$

b
$$\frac{AD}{BD} = \frac{CD}{DE}$$

8 Given: QR and QS are tangent to ⊙P at points R and S.

points R and S.

Prove:
$$\overline{PQ} \perp \overline{RS}$$
 (Hint: This can be proved in just a few steps.)

RR+ \overline{QR} + \overline{QS} + \overline{AR} \overline{OPo} \overline{RPS} \overline{PO} \overline{PO}

10 \bigcirc P is tangent to each side of ABCD. AB = 20, BC = 11, and DC = 14. Let AQ = x and find AD.

8. Corr sds ~ 1 prop.

11 a Find the radius of ⊙P.

b Find the slope of the tangent to ⊙P at point Q.

$$PQ = \sqrt{\Delta x^2 + \Delta y^2} = \sqrt{(4+2)^2 + (9-5)^2} = \sqrt{6^2 + 4^2}$$
$$= \sqrt{36 + 16} = \sqrt{52} = \sqrt{4 \cdot 13} = 2\sqrt{13}$$

m tan atQ + (L seg opp necip m)

$$m PQ = \frac{AY}{AX} = \frac{9-5}{4+2} = \frac{4}{b} = \frac{2}{3}$$
 Soul = $-\frac{3}{2}$

12 Two concentric circles have radii 3 and 7. Find, to the nearest hundredth, the length of a chord of the larger circle that is tangent to the smaller circle. (See problem 2 for a diagram.)

$$x^{2} = 49 - 9$$
 $x^{2} = 40$
 $x = 14 \cdot \sqrt{10}$
 $x = 2\sqrt{10}$
 $x = 2\sqrt{10}$
 $x = 2\sqrt{10}$
 $x = 2\sqrt{10}$
 $x = 2\sqrt{10}$

- 13 The centers of two circles of radii 10 cm and 5 cm are 13 cm apart.
 - a Find the length of a common external tangent. (Hint: Use the common-tangent procedure.)
 - b Do the circles intersect?

- 14 The centers of two circles with radii 3 and 5 are 10 units apart. Find the length of a common internal tangent. (Hint: Use the common-tangent procedure.)
- **15** Given: \overline{PT} is tangent to @ Q and R at points S and T.

Conclusion: $\frac{PQ}{PR} = \frac{SQ}{TR}$

16 Given: Tangent © A, B, and C, AB = 8, BC = 13, AC = 11

Find: The radii of the three ③ (Hint: This is a walk-around problem.)

17 The radius of ⊙O is 10.
The secant segment PX measures 21 and is 8 units from the center of the ⊙.

a Find the external part (PY) of the secant segment.

b Find OP.

18 Given: $\triangle ABC$ is isosceles, with base \overline{BC} .

Conclusion: $\overline{BR} \cong \overline{RC}$

- 19 If two of the seven circles are chosen at random, what is the probability that the chosen pair are
 - a Internally tangent?
 - **b** Externally tangent?
 - c Not tangent?

