- 13 The centers of two circles of radii $10\ \mathrm{cm}$ and $5\ \mathrm{cm}$ are $13\ \mathrm{cm}$
 - a Find the length of a common external tangent. (Hint: Use the common-tangent procedure.) 12
 - b Do the circles intersect? Yes (13<15)

- 14 The centers of two circles with radii 3 and 5 are 10 units apart. Find the length of a common internal tangent (Hint: Use the common-tangent procedure.)
- 15 Given: \overline{PT} is tangent to @ Q and R at points S and T.

Conclusion:
$$\frac{PQ}{PR} = \frac{SQ}{TR}$$

16 Given: Tangent ® A, B, and C, AB = 8, BC = 13, AC = 11

Find: The radii of the three 3 (Hint: This is a walk-around problem.)

17 The radius of ⊙O is 10. The secant segment \overline{PX} measures 21 and is 8 units from the center of the O.

- a Find the external part (PY) of the secant segment. 21-12=9
- b Find OP.

18 Given: $\triangle ABC$ is isosceles, with base \overline{BC} . Conclusion: $\overline{BR} \cong \overline{RC}$

- 1. AABC 1505, base BC
- 1. Given
- 2. ISDS ⇒2=sds
- 3. Each side AABC tan 3. ton 1 at 1pt.
- 4. 2lan > = seg
- 5. Subtract (AC-AP=AB-AQ) 6. Substitute

- 19 If two of the seven circles are chosen at random, what is the probability that the chosen pair are
 - a Internally tangent? 2/7
 - **b**Externally tangent? 3/7-
 - c Not tangent? 2/4

