b Given: m∠XQY = 110

Find: mXDY

Name

Adv Geo -

10-3: Arcs of a Circle

Objectives

After studying this section, you will be able to

- Identify the different types of arcs
- Determine the measure of an arc
- Recognize congruent arcs
- Apply the relationships between congruent arcs, chords, and central angles

Types of Arcs

MAJORARC DA MINDRARC CB

Definition

An arc consists of two points on a circle and all points on the circle needed to connect the points by a single path.

Definition

The center of an arc is the center of the circle of which the arc is a part.

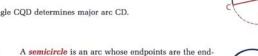
Definition

A central angle is an angle whose vertex is at the center of a circle.

A minor arc is an arc whose points are on or between the sides of a central angle.

Central angle APB determines minor arc AB.

Radii OA and OB determine central angle AOB.


Definition

Definition

A major arc is an arc whose points are on or outside of a central angle.

Central angle CQD determines major arc CD.

points of a diameter.

Arc EF is a semicircle.

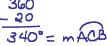
The symbol — is used to label arcs. The minor arc joining A and B is called \widehat{AB} . The major arc joining A and B is called \widehat{AXB} .

(The extra point, X, is named to make it clear that we are referring to the arc from A to B by way of point X. This helps to avoid confusion when a major arc or a semicircle is being discussed.)

(not length of arc)

The measure of a minor arc or a semicircle is the same as the measure of the central angle that inter-

Definition


Definition

The measure of a major arc is 360 minus the measure of the minor arc with the same endpoints.

Example

a Given: mAB = 20 Find: mACB

Congruent Arcs

Two arcs that have the same measure are not necessarily congruent arcs. In the concentric circles shown, mAB = 65 and $\widehat{mCD} = 65$, but \widehat{AB} and \widehat{CD} are not congruent. Under what conditions, do you think, will two arcs be congruent?

Same 4 engh 3 whenever they have the same Two arcs are congruen whenever they have the sam measure and are parts of the same circle or congruent circles.

We may conclude that $\widehat{AB} \cong \widehat{CD}$.

If $\bigcirc P \cong \bigcirc Q$, we may conclude that $\widehat{EF} \cong \widehat{GH}$.

Relating Congruent Arcs, Chords, and Central Angles In the diagram, points A and B determine

one central angle, one chord, and two arcs (one major and one minor).

You can readily prove the following theorems.

Theorem 79

If two central angles of a circle (or of congruent circles) are congruent, then their intercepted arcs

Theorem 80

If two arcs of a circle (or of congruent circles) are congruent, then the corresponding central angles are congruent.

Theorem 81

If two central angles of a circle (or of congruent circles) are congruent, then the corresponding chords are congruent.

Theorem 82

If two chords of a circle (or of congruent circles) are congruent, then the corresponding central angles are congruent.

If two arcs of a circle (or of congruent circles) are congruent, then the corresponding chords are congruent.

Theorem 84

If two chords of a circle (or of congruent circles) are congruent, then the corresponding arcs are congruent.

Problem 1

Given: ⊙B;

D is the midpt. of AC.

Conclusion: BD bisects ∠ABC.

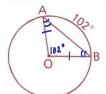
Proof

1 ⊙B; D is the midpt of AC.

$$2 \widehat{AD} \cong \widehat{DC}$$

$$\overrightarrow{BD}$$
 bisects $\angle ABC$.

1 Given


2 mdpt ⇒ ≥ arco

Problem 2

If $\widehat{mAB} = 102$ in $\bigcirc O$, find $m \angle A$ and $m \angle B$ in $\triangle AOB$.

Solution

$$\widehat{AB} = 102^{\circ}$$

Problem 3

a What fractional part of a circle is an arc of 36°? Of 200°?

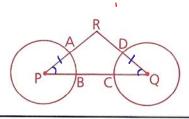
b Find the measure of an arc that is $\frac{7}{12}$ of its circle.

Solution

There are 360° in a whole ⊙.

$$\frac{h^{(50)} \pm}{(30)^{12}} = \frac{\times}{360} = 210^{\circ}$$

Problem 4


Given:

P and Q,

$$\angle P \cong \angle Q, \overline{AR} \cong \overline{RD}$$

Prove: $\widehat{AB} \cong \widehat{CD}$ (Hint: First prove

that $\bigcirc P \cong \bigcirc Q$.)

Proof

1 ® P and Q

$$P$$
 2 ∠P \cong ∠Q

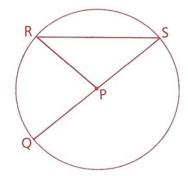
$$\begin{array}{ccc}
3 & \overline{RP} \cong \overline{RQ} \\
4 & \overline{AP} \approx \overline{PD}
\end{array}$$

$$4 \ \overline{AR} \cong \overline{RD}$$

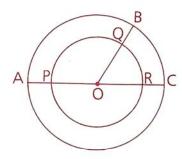
$$5 \overline{AP} \cong \overline{DQ}$$

$$6 \odot P \cong \odot Q$$

$$3 \triangle \rightarrow \triangle$$

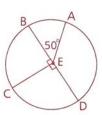

$$P \cong \bigcirc Q$$
 $6 \cong rad \Rightarrow \cong \bigcirc$

$$7 \widehat{AB} \cong \widehat{CD}$$

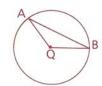

10-3 Homework: Arcs of a Circle

- 1 Match each item in the left column with the correct term in the right column.
 - a QRS
- 1 Radius
- $b \overline{QS}$
- 2 Diameter
- c RQS
- 3 Chord

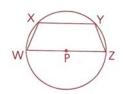
- d RS
- 4 Minor arc
- e RS
- 5 Major arc 6 Semicircle
- f ∠RPQ
- g PS
- 7 Central angle

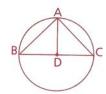


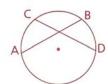
- 2 Given: Two concentric circles with center O; ∠BOC is acute.
 - a Name a major arc of the smaller circle.
 - h Name a minor arc of the larger circle.
 - **c** What is $\widehat{mBC} + \widehat{mPO}$?
 - d Which is greater, mBC or mPQ?
 - e Is \widehat{BC} congruent to \widehat{OR} ?



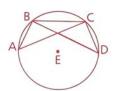
- 3 In circle E, find each of the following.
 - a mBC
- c mACD
- e mADC


- b mAD
- d mBAD


4 Given: $\bigcirc Q$, $\angle A = 25^{\circ}$ Find: mAB


- 5 Given: OP.
 - Conclusion: $\overline{WX} \cong \overline{YZ}$

6 Given: $\bigcirc D$, $\angle B \cong \angle C$ Conclusion: $\widehat{AB} \cong \widehat{AC}$



7 Given:
$$\overline{AB} \cong \overline{CD}$$

Conclusion: $\widehat{AC} \cong \widehat{BD}$

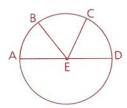
8 Given: $\frac{\bigcirc E}{AB} \cong \overline{CD}$

Prove: $\overline{BD} \cong \overline{AC}$

9 What fractional part of a circle is an arc that measures

c 144

d 315


10 Find the measure of an arc that is

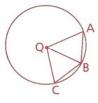
- $\mathbf{a} \frac{3}{5}$ of its circle
- **b** $\frac{5}{9}$ of its circle
- c 70% of its circle

11 Given: AD is a diameter of ⊙E. C is the midpoint of \widehat{BD} .

$$\widehat{\text{mAB}} = 9x + 30, \\
\widehat{\text{mCD}} = 54 - x$$

Find: m∠AEC

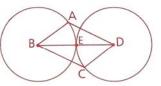
12 Find the length of a chord that cuts off an arc measuring 60 in a circle with a radius of 12.


- 13 Find the length of each arc described. (The length is a fractional part of the circumference.)
 - a An arc that is $\frac{5}{8}$ of the circumference of a circle with radius 12
 - **b** An arc that has a measure of 270 and is part of a circle with radius 12

14 \overline{AB} is a chord of circle E, and C is the midpoint of \widehat{AB} . Prove that \overrightarrow{EC} is the perpendicular bisector of chord \overline{AB} .

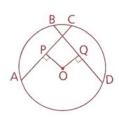
15 Given: ⊙Q;

B is the midpt. of \widehat{AC} .


Conclusion: $\angle A \cong \angle C$

16 Given: $\bigcirc B \cong \bigcirc D$,

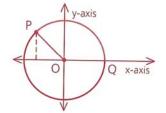
 $\widehat{AE} \cong \widehat{CE}$


Prove: ABCD is a □.

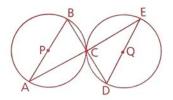
$$\frac{\overline{OP}}{\overline{OP}} \perp \overline{AC}, \overline{OQ} \perp \overline{BD},$$

$$\overline{OP} \cong \overline{OQ}$$

Conclusion:
$$\widehat{AB} \cong \widehat{CD}$$


18 A polygon is inscribed in a ⊙ if all its vertices lie on the O. Find the measure of the arc cut off by a side of each of the following inscribed polygons.

- a A regular hexagon
- b A regular pentagon
- c A regular octagon


19 Point P is located at (-5, 5).

- a Find the radius of ⊙O.
- b Find the measure of PQ.

20 Given: $\frac{\bigcirc P}{\overline{BC}} \cong \frac{\bigcirc Q}{\overline{CD}}$,

Conclusion: $\angle A \cong \angle E$

