Name Adv Geo

10-2: Congruent Chords

Objective

After studying this section, you will be able to

Apply the relationship between congruent chords of a circle

Theorem 77 If two chords of a circle are equidistant from the center, then they are congruent.

chds egaist $\Rightarrow \cong$ chds

Given: $\bigcirc P$, $\overline{PX} \perp \overline{AB}$, $\overline{PY} \perp \overline{CD}$, $\overline{PX} \cong \overline{PY}$

Prove: $\overline{AB} \cong \overline{CD}$

4A= by HL

Theorem 78 If two chords of a circle are congruent, then they are equidistant from the center of the circle.

Given: $\bigcirc O$, $\overline{AB} \cong \overline{CD}$, $\overline{OE} \perp \overline{AB}$, $\overline{OF} \perp \overline{CD}$

Prove: $\overline{OE} \cong \overline{OF}$

Given:
$$\bigcirc O$$
, $\overline{AB} \cong \overline{CD}$,

$$OP = 12x - 5$$
, $OQ = 4x + 19$

Find: OP

Solution

OO,
$$AB = CD(g) \rightarrow OP = OQ$$
 ($= chds \rightarrow chds = egdit$

Problem 2

Given: $\triangle ABC$ is isosceles, with base \overline{AC} .

 $\bigcirc P$, $\overline{PQ} \perp \overline{AB}$, $\overline{PR} \perp \overline{CB}$

Prove: $\triangle PQR$ is isosceles.

Proof

- 1 $\bigcirc P$, $\overline{PQ} \perp \overline{AB}$, $\overline{PR} \perp \overline{CB}$
- 2 \triangle ABC is isosceles, with base \overline{AC} .
- $3 \overline{AB} \cong \overline{BC}$
- $4 \overline{PQ} \cong \overline{PR}$
- 5 \triangle PQR is isosceles.

- 1 Given
- 2 Given
- 3 1505 →2 5d5 E
- 4 ≅ chds ⇒ chds egdist
- 5 2 3ds = 1509

NAME Adv Geo

10-2: 1-12, skip 8 & 10

1 In a circle, chord \overline{AB} is 325 cm long and chord \overline{CD} is $3\frac{1}{4}$ m long. Which is closer to the center?

3.25m

2 = chds => chds

3 Given: $\bigcirc P$, $\overline{PR} \perp \overline{WX}$, $\overline{PS} \perp \overline{XY}, \overline{PR} \cong \overline{PS}$

Conclusion: $\angle W \cong \angle Y$

1. OP, PR LWX , PS LXY

2. WX = YX

3. AWXY 1805, base WY

4. ZW = ZY

a. egdist⇒=chds

3. 2 = sals => 1505

4. 14 30

Find: AB

PQ=PR -> AB = CD

AB = 6 (-1) +14 = (8)

4 Given: Equilateral △ ABC is inscribed in OQ.

Conclusion: AB, BC, and CA are equidistant from the center.

5 Given: OP:

P is the midpoint of \overline{MN} . $\overline{MN} \perp \overline{AD}, \overline{MN} \perp \overline{BC}$

Conclusion: ABCD is a □.

- 1. OP, Prodpt MN
- 2. PM = NP
- 3. AD = BC
- 4. MN I AD &BC
- 5. AD II BC
- 6. DABCD

- 1. given
- a. mdpt > = segs
- 3 . egdist => = chds
- 4. given
- 5. lines 1 to same line ⇒ 1
- 6. In quad, If I proppsds is both = 411, then []

- 6 A fly is sitting at the midpoint of a wooden chord of a circular wheel. The wheel has a radius of 10 cm, and the chord has a length of 12 cm.
 - a How far from the hub (center) is the fly? 8 on
 - b The wheel is spun. What is the path of the fly? circle

7 To the nearest hundredth, find

- a The area of the circleb The circumference of the circle

a.
$$A = r^2 \pi = \left(\frac{19}{2}\right)^2 \pi =$$

- 11 In circle O, PB = 3x 17, CD = 15 x, and OQ = OP = 3.
 - a Find AB.
 - b Find the radius of ⊙O.

9 Given: ⊙F,

 $\overline{FE} \perp \overline{BC}, \overline{FD} \perp \overline{AB};$ BF bisects ∠ABC.

Prove: $\overline{BC} \cong \overline{BA}$

12 A regular hexagon with a perimeter of 24 is inscribed in a circle. How far from the center is each side?

