Name Adv Geo

10-2: Congruent Chords

Objective

After studying this section, you will be able to

Apply the relationship between congruent chords of a circle

Theorem 77 If two chords of a circle are equidistant from the center, then they are congruent.

Chas equist $\Rightarrow \stackrel{\sim}{=}$ chas

Given: $\bigcirc P$, $\overline{PX} \perp \overline{AB}$, $\overline{PY} \perp \overline{CD}$, $\overline{PX} \cong \overline{PY}$

Prove: $\overline{AB} \cong \overline{CD}$

1. PX + AB, PY + CD 2. <1, <2, <3, <4 c+<5 1. given 2. ⊥ ⇒rtL

7. 21, 12, 23, 24 rtcs 3. 21 \(\) 2 \

3. N+Ls ⇒ ELS

4. Draw PA, PB, PC, & PD

4. AUX

5. PA = PB = PC = PD

5. 0 > = rad

G. PX = PY

6. Given

7. A PAX & APBX &

7. HL

APCY ZAPDY

T. 11

B. MX = XB = CY = YD

8. OPCTC

9 AB = CD

9. Add

Theorem 78 If two chords of a circle are congruent, then they are equidistant from the center of the circle.

≅chds ⇒ chs egdist

Given: \bigcirc O, $\overline{AB} \cong \overline{CD}$, $\overline{OE} \perp \overline{AB}$, $\overline{OF} \perp \overline{CD}$ Prove: $\overline{OE} \cong \overline{OF}$

CD C A

Given: $\bigcirc O$, $\overline{AB} \cong \overline{CD}$,

$$OP = 12x - 5, OQ = 4x + 19$$

Find: OP

Solution AB=CD(g), OP = OQ (= chds => chds egdist)

$$|2x-5=4x+19$$

-4x +5 -4x +5

Given: $\triangle ABC$ is isosceles, with base \overline{AC} .

 $\odot P, \, \overline{PQ} \perp \overline{AB}, \, \overline{PR} \perp \overline{CB}$

Prove: △PQR is isosceles.

Proof

1 $\bigcirc P$, $\overline{PQ} \perp \overline{AB}$, $\overline{PR} \perp \overline{CB}$

2 \triangle ABC is isosceles, with base \overline{AC} .

 $3 \overline{AB} \cong \overline{BC}$

 $4~\overline{PQ}\cong\overline{PR}$

1 Given

2 Given

3 1505 ⇒ 2= 5ds

5 \triangle PQR is isosceles.

NAME Adv Geo

10-2: 1-12, skip 8 & 10

1 In a circle, chord \overline{AB} is 325 cm long and chord \overline{CD} is $3\frac{1}{4}$ m long. Which is closer to the center? 3.25 m

≅chd5 ⇒ chds egdist

2 Given: $\bigcirc P$, $\overline{PQ} \cong \overline{PR}$, AB = 6x + 14,CD = 4 - 4xFind: AB

3 Given: $\bigcirc P$, $\overline{PR} \perp \overline{WX}$, $\overline{PS} \perp \overline{XY}, \overline{PR} \cong \overline{PS}$

Conclusion: $\angle W \cong \angle Y$

1. OP PRIWX, PSIXY, PREPS

PS 2. chds egdist→ = chds 2. WX E VX

3. LXWY = LXYN

4 Given: Equilateral △ ABC is inscribed in OQ. Conclusion: AB, BC, and CA are equidistant from the center.

In quad If Iproposds both & & 11, then []

5 Given: ⊙P;

P is the midpoint of \overline{MN} . $\overline{MN} \perp \overline{AD}, \overline{MN} \perp \overline{BC}$

Conclusion: ABCD is a □.

- 6 A fly is sitting at the midpoint of a wooden chord of a circular wheel. The wheel has a radius of 10 cm, and the chord has a length of 12 cm.
 - a How far from the hub (center) is the fly?
 - b The wheel is spun. What is the path of the fly?

- a The area of the circle
- b The circumference of the circle

a)
$$A = \pi \Gamma^2 = \left(\frac{19}{2}\right)^2 \pi = \frac{361}{4} \pi$$

- 11 In circle O, PB = 3x 17, CD = 15 x, and OQ = OP = 3.
 - a Find AB. = 3
 - b Find the radius of ⊙O.

PO = OQ
$$\Rightarrow$$
 BA = CD
2(3x-17) = 15-x
6x-34 = 15-x
+x +34 +34+x
7x = 49
x = 7

9 Given: ⊙F,

 $\overrightarrow{FE} \perp \overrightarrow{BC}, \overrightarrow{FD} \perp \overrightarrow{AB};$ \overrightarrow{BF} bisects $\angle ABC$.

Prove: $\overline{BC} \cong \overline{BA}$

12 A regular hexagon with a perimeter of 24 is inscribed in a circle. How far from the center is each side?

