NAME Ms. Kresovic

10.1: The Circle

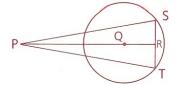
Objectives

After studying this section, you will be able to

- Identify the characteristics of circles
- Recognize chords and diameters of circles

Date

Recognize special relationships between radii and chords

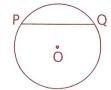

Problem 1

Acc Geo -

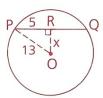
Given: ⊙Q,

 $\overline{PR} \perp \overline{ST}$

Prove: $\overline{PS} \cong \overline{PT}$

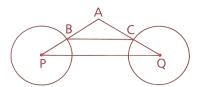


Proof


$ \begin{array}{c c} \hline 1 & \bigcirc Q, \overline{PR} \perp \overline{ST} \\ 2 & \overline{PR} \text{ bisects } \overline{ST}. \end{array} $	1 Given 2	9	
$\begin{array}{cc} 3 & \overline{PR} \perp \text{bis. } \overline{ST} \\ 4 & \overline{PS} \cong \overline{PT} \end{array}$	3 4		

Problem 2

The radius of circle O is 13 mm. The length of chord \overline{PQ} is 10 mm. Find the distance from chord \overline{PQ} to the center, O.


Solution

Problem 3

Given: $\triangle ABC$ is isosceles $(\overline{AB} \cong \overline{AC})$.

Prove: $\bigcirc P \cong \bigcirc Q$

Proof

1 $\triangle ABC$ is isosceles $(\overline{AB} \cong \overline{AC})$. 2 ⑤ P and Q, $\overline{BC} \parallel \overline{PQ}$ 3 $\angle ABC \cong \angle P$, $\angle ACB \cong \angle Q$ 4 $\angle ABC \cong \angle ACB$ 5 $\angle P \cong \angle Q$	1 Given 2 Given 3 4 5
$6 \overline{AP} \cong \overline{AQ}$	5 6
$7 \overline{PB} \cong \overline{CQ}$ $8 \bigcirc P \cong \bigcirc Q$	7 8

CONGRUENT CHORDS

Objective

After studying this section, you will be able to

Apply the relationship between congruent chords of a circle

Part One: Introduction

If two chords are the same distance from the center of a circle, what can we conclude?

Theorem 77 If two chords of a circle are equidistant from the center, then they are congruent.

Given: $\bigcirc P$, $\overline{PX} \perp \overline{AB}$, $\overline{PY} \perp \overline{CD}$, $\overline{PX} \cong \overline{PY}$

Prove: $\overline{AB} \cong \overline{CD}$

The proof of Theorem 77 is left for you to do. (Use four congruent triangles.) The converse of Theorem 77 can also be proved.

Theorem 78 If two chords of a circle are congruent, then they are equidistant from the center of the circle.

Given: \bigcirc O, $\overline{AB} \cong \overline{CD}$, $\overline{OE} \perp \overline{AB}$, $\overline{OF} \perp \overline{CD}$

Prove: $\overline{OE} \cong \overline{OF}$

NAME Acc Geo -

Date

10.1 Homework

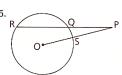
4 Given: $\bigcirc Q$, $\overline{QT} \perp \overline{RS}$ Prove: \overrightarrow{TQ} bisects $\angle RTS$.

5 Chord \overline{AB} measures 12 mm and the radius of $\overline{\bigcirc}P$ is 10 mm. Find the distance from \overline{AB} to P.

6 Find the length of a chord that is 15 cm from the center of a circle with a radius of 17 cm.

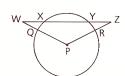
10 Given: ⊙O;

 \overrightarrow{OR} bisects \overrightarrow{PQ} . Prove: \overrightarrow{RO} bisects $\angle PRQ$.



14 Two circles intersect and have a common chord 24 cm long. The centers of the circles are 21 cm apart. The radius of one circle is 13 cm. Find the radius of the other circle.

16 \overline{PQ} is a diameter of $\odot O$. P = (-3, 17) and Q = (5, 2). Find the center and the radius of $\odot O$.

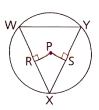

22 Find the radius of a circle in which a 48-cm chord is 8 cm closer to the center than a 40-cm chord.

23 In circle O, PQ = 4, RQ = 10, and PO = 15. Find PS (the distance from P to ⊙O).

20 Given: $\bigcirc P$, $\overline{WX} \cong \overline{YZ}$

Prove: $\overline{WQ} \cong \overline{ZR}$

NAME Acc Geo -

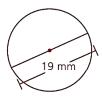

Geo –

10.2 Homework

Problem Set A, continued

 $\begin{array}{ccc} \textbf{3} & \text{Given: } \bigcirc P, \, \overline{PR} \perp \overline{WX}, \\ \overline{PS} \perp \overline{XY}, \, \overline{PR} \cong \overline{PS} \end{array}$

Conclusion: $\angle W \cong \angle Y$



- **6** A fly is sitting at the midpoint of a wooden chord of a circular wheel. The wheel has a radius of 10 cm, and the chord has a length of 12 cm.
 - a How far from the hub (center) is the fly?
 - **b** The wheel is spun. What is the path of the fly?

Problem Set B

- 7 To the nearest hundredth, find
 - a The area of the circle
 - **b** The circumference of the circle

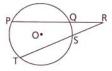
NAME

Acc Geo -

10 Given: $\bigcirc F$, $\overline{AB} \cong \overline{AC}$, $\overline{DF} \perp \overline{AB}$, $\overline{EF} \perp \overline{AC}$

Prove: $\triangle ADE$ is isosceles.

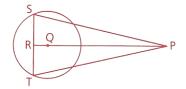
- 11 In circle O, PB = 3x 17, CD = 15 x, and OQ = OP = 3.
 - a Find AB.
 - **b** Find the radius of \bigcirc O.


12 A regular hexagon with a perimeter of 24 is inscribed in a circle. How far from the center is each side?

13 A 16-by-12 rectangle is inscribed in a circle. Find the radius of the circle.

Problem Set C

14 Given: $\bigcirc O$, $\overline{PQ} \cong \overline{TS}$ Prove: $\overline{RQ} \cong \overline{RS}$


NAME Ms. Kresovic Acc Geo -

Date

Classwork 10.1 - hand in before the period ends.

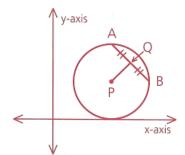
2 Given: $\bigcirc Q$, $\overline{PR} \perp \overline{ST}$ Prove: $\angle S \cong \angle T$

Acc Geo -

18 Given: ⊙P;

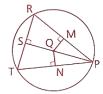
 \boldsymbol{Z} is the midpt. of $\overline{\boldsymbol{W}\boldsymbol{X}}.$ \triangle WAX is isosceles, with base \overline{WX} .

Prove: \overrightarrow{AZ} passes through P.



Ms. Kresovic

NAME Acc Geo -Date


17 $\odot P$ just touches (is tangent to) the x-axis. P = (15, 13) and Q = (19, 16).

- a Find the radius of ⊙P.
- b Find PQ.
- ${\bf c}$ Find the length of \overline{AB} .

10.2

8 Given: OQ, $\overline{PS} \perp \overline{RT}$, $\overline{MQ} \perp \overline{RP}$, $\overline{NQ} \perp \overline{PT}$ Conclusion: $\overline{MQ} \cong \overline{QN}$

R

I. \bigcirc Q, $\overline{PS} \perp \overline{RT}$

L.

2. MQ I RP & NQ I PT

2.

3. $\overline{RS} \cong \overline{ST}$

3.

 $4.\overline{SP} \cong \overline{SP}$

4.

5. Zast & Zask rt Zs

5.

6. \angle QST \cong \angle QSR

6.

7. $\triangle PSR \cong \triangle PST$

7.

8. $\overline{RP} \cong \overline{TP}$

8.

9. $\overline{MQ} \cong \overline{QN}$

٩.