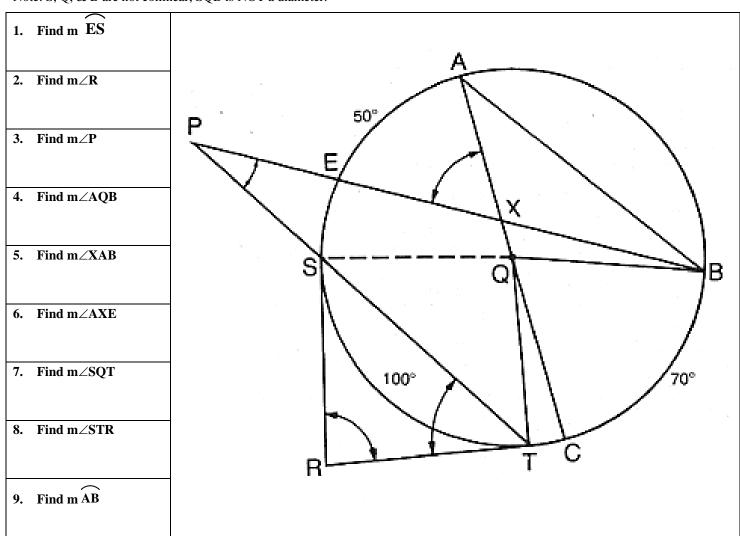
Name_

Period _

Chapter 10 Review for the OFE Wednesday, February 03, 2016 Circle S, A or N to tell whether each statement is SOMETIMES, ALWAYS or NEVER true.

Problems 1-9. Given $\bigcirc O$, \overline{RT} and \overline{SR} are tangents, \overline{AC} is a diameter, \overline{AE} is 50°, \overline{ST} is 100°, \overline{TC} is 5°, m \angle CQB is 70°. Note: S, Q, & B are not collinear; SQB is NOT a diameter.

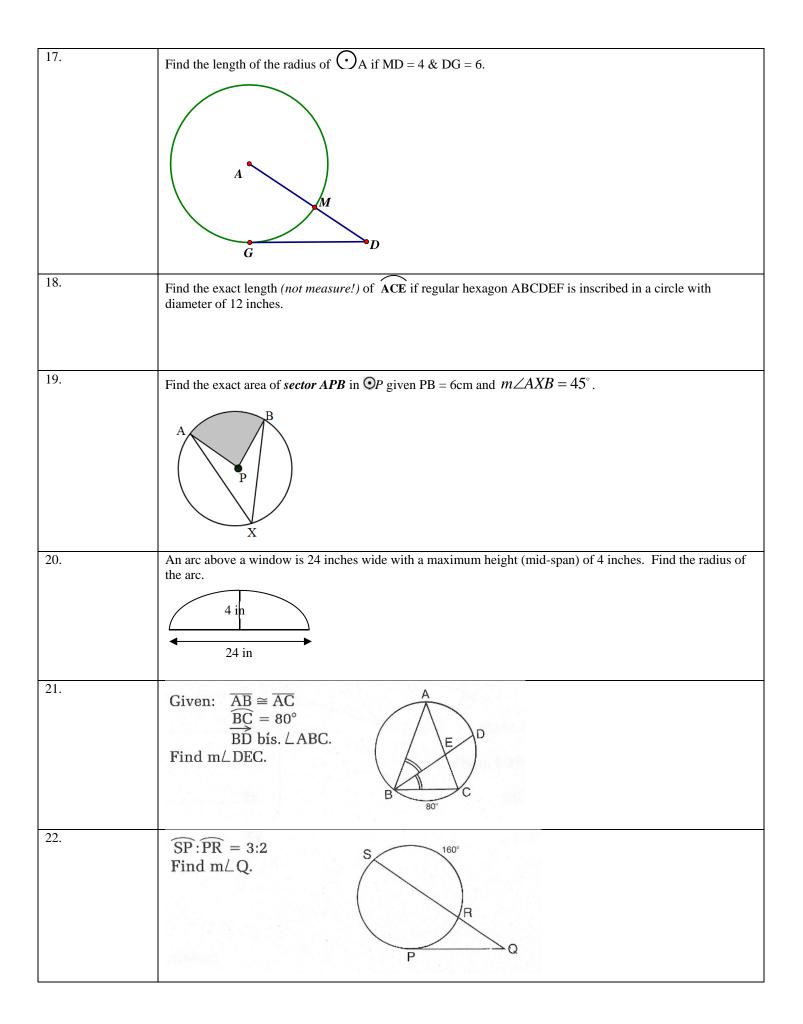


Problem 10 a-d. Show work where needed. Place your answer in the blank. (3 points each; 12 total.)

W:				
X:	W	3 4 X	8 3	4 2
Y:	60°	8	v	
Z:				

Problems 11-22. Show work where needed. Place your answer in the left-most column. (6 points each.)

	w work where needed. I face your answer in the fert-most column: (o points each.)		
11.	\bigcirc O ∠OCB = 75° Find the measure of ∠A.		
12.	A square with an area of 289 is inscribed in a circle. Find the diameter of the circle.		
13.	Given AC = 14, AB = 10, and CB = 18. Find the length of the radius of the largest circle.		
14.	Given: Tangent ® A, B, and C, AB = 8, BC = 13, AC = 11 Find: The radii of the three ® (Hint: This is a walk-around problem.)		
15.	O with radius 8, P with radius 3. The length of the common external tangent segment is 12. Find the distance between the two circles (that is \overline{OP}).		
16.	It is given that $\angle BAP = 40^{\circ}$. If a point is chosen at random on $\bigcirc P$, what is the probability that it is on \widehat{AB} ?		



Proofs: Complete on separate paper.

Remember that there is more than one way to write a proof. Hence, more than one proof will be correct. "Brevity is beautiful" therefore the shortest proof (that is complete) is preferable.

