Date:

Ms. Kresovic

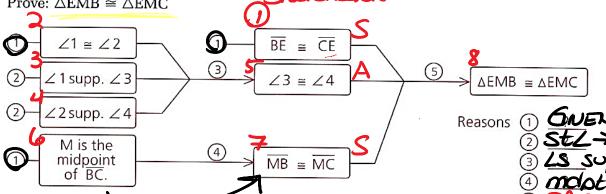
What are the 5 purpose of proof?

- VERIFY THE TRUTH OF A MATHEMATICAL STATEMENT.
- EXPLAIN WHY THE STATEMENT IS TRUE
- COMMUNICATE OUR MATH, KNOWLEDGE
- DISCOVERNEW MATH

SUDJUATIC SYSTEM

LEVELS OF REASONING What are the three postulates that prove triangles congruent?

Sample Problems


20 Study the problem below, then copy the flow diagram and fill in the reason for each statement.

Given: $\angle 1 \cong \angle 2$;

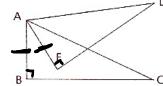
M is the midpt. of \overline{BC} .

 $\overline{\text{BE}} \cong \overline{\text{CE}}$

Prove: $\triangle EMB \cong \triangle EMC$

21 In problem 20, what given information is not needed to prove the triangles congruent?

EH = EM (Ref) then SSS.


Problem Set C

26 Given: $\overline{AB} \cong \overline{AE}$;

 \overrightarrow{AE} and \overrightarrow{AC} trisect $\angle BAD$.

 $\frac{\overline{AB}}{\overline{AE}} \perp \frac{\overline{BC}}{\overline{DE}},$

Conclusion: $\triangle ABC \cong \triangle AED$

AE+AZ AB =AE This LBAD

AEIDE

ABLBC

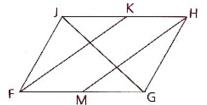
Stadements

retes==Ls

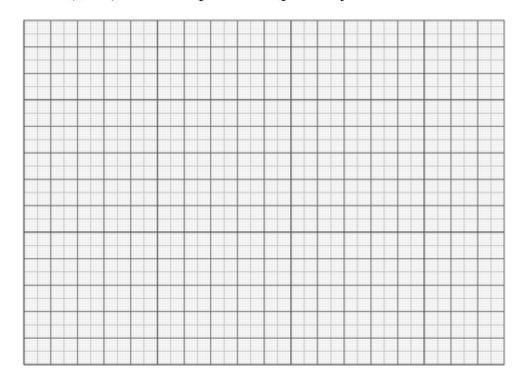
 AMDG

Name Adv Geo - 3: Congruent Triangles 3.2

Ms. Kresovic


Date:

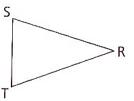
27 Given: $\overline{JH} \cong \overline{FG}$;


K and M are midpoints. \angle HKF $\cong \angle$ FMH,

 $\angle KJG \cong \angle MGJ$, $\angle JGH \cong \angle FJG$

Conclusion: $\triangle FJK \cong \triangle HGM$

28 Consider two triangles, $\triangle ABC$ and $\triangle FDE$, with vertices A=(0,7), B=(-4,0), C=(0,0), D=(2,3), E=(2,-1), and F=(9,-1). Draw a diagram and explain why $\triangle ABC\cong\triangle FDE$.

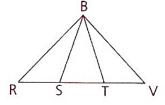


Ms. Kresovic

Date:

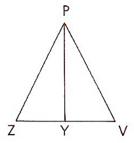
22 Given: $\overline{RS} \cong \overline{RT}$

Conclusion: $\triangle RST \cong \triangle RTS$



23 Given: S and T trisect \overline{RV}

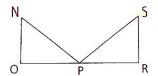
 $\angle R \cong \angle V$


 $\angle BST \cong \angle BTS$

Conclusion: $\triangle BRS \cong \triangle BVT$

24 Given: \overrightarrow{PY} bisects $\angle VPZ$. $\angle VPY = (2x + 7)^{\circ}$, $\angle ZPY = (3x - 9)^{\circ}$, $PZ = \frac{1}{2}x + 5$, PV = x - 3

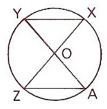
Prove: $\triangle VPY \cong \triangle ZPY$ (Use a paragraph proof.)



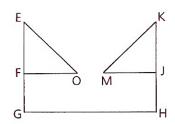
Date:

Homework

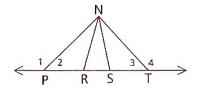
11 Given: $\angle N$ is comp. to $\angle NPO$. $\angle S$ is comp. to $\angle SPR$. $\angle NPO \cong \angle SPR$, $\overline{NP} \cong \overline{SP}$


Conclusion: $\triangle NOP \cong \triangle SRP$

12 Given: O is the midpt. of \overline{AY} .


O is the midpt. of \overline{ZX} .

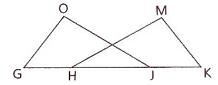
Conclusion: $\triangle ZOA \cong \triangle XOY$


13 Given: $\overline{EO} \cong \overline{KM}$, $\overline{FO} \cong \overline{JM}$, $\overline{EG} \cong \overline{KH}$; F is the midpt. of \overline{EG} . J is the midpt. of \overline{KH} .

Conclusion: $\triangle EFO \cong \triangle KJM$

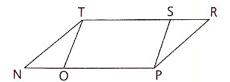
14 Given: $\angle 1 \cong \angle 4$, $\overline{PR} \cong \overline{TS}$, $\overline{NP} \cong \overline{NT}$

Prove: $\triangle NPR \cong \triangle NTS$

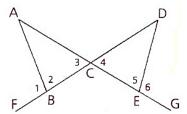


Ms. Kresovic

Date:


15 Given: $\overline{GH} \cong \overline{KJ}$, $\overline{HM} \cong \overline{JO}$, $\overline{GO} \cong \overline{KM}$

Prove: $\triangle GOJ \cong \triangle KMH$


16 Given: $\angle R \cong \angle N$, $\overline{RP} \cong \overline{NT}$, $\overline{RT} \cong \overline{NP}$, $\overline{TS} \cong \overline{OP}$

Conclusion: $\triangle NOT \cong \triangle RSP$

17 Given: $\angle 1 \cong \angle 6$, $\overline{BC} \cong \overline{EC}$

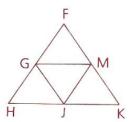
Conclusion: $\triangle ABC \cong \triangle DEC$

 AMDG

Name Adv Geo - 3: Congruent Triangles

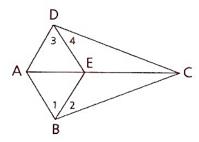
3.2

Ms. Kresovic


Date:

18 Given: $\overline{FH} \cong \overline{FK}$,

 $\angle H \cong \angle K$;


G is the midpt. of \overline{FH} . M is the midpt. of \overline{FK} . J is the midpt. of \overline{HK} .

Conclusion: $\triangle GHJ \cong \triangle MKJ$

25 Given: $\angle 3 \cong \angle 1$, $\angle 4 \cong \angle 2$, $\angle DAC \cong \angle 3$, $\angle BAC \cong \angle 1$, $\overline{AD} \cong \overline{AB}$

Prove: $\triangle CAD \cong \triangle CAB$

