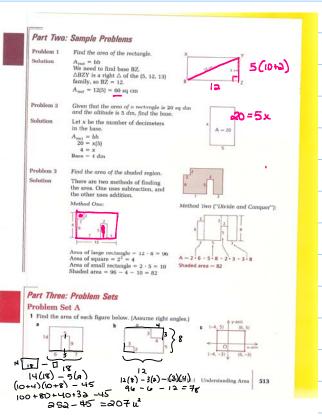
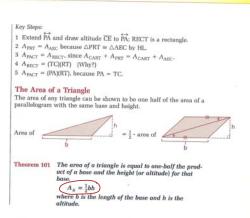

Acc Geo


11.1: 5, 6, 9, 10, 15 and 11.2: 3, 11, 15, 16, 18, 20-26


Note Title 2/9/2016

11.1 -- Understanding Area

11.2 -- Areas of Parallelograms & Triangles

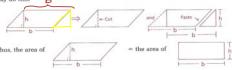
Part Two: Sample Problems

Find the area of each triangle.

Note The base of a triangle is not always on the bottom. The 10-cm altitude is the altitude associated with the 15-cm base.

 $h A_{\triangle} = \frac{1}{2}bh$ $=\frac{1}{2}(7)(8)$ = 28 sq mm

Note The altitude of a triangle is not always inside the triangle.


AREAS OF PARALLELOGRAMS AND TRIANGLES

Objectives

After studying this section, you will be able to
Find the areas of parallelograms
Find the areas of triangles

Part One: Introduction

Many areas can be found by a "cut and paste" method. For example, to find the area of a parallelogram with base b and altitude h, we may do this:

Theorem 100 The area of a parallelogram is equal to the product of the base and the height.

A = bh

where b is the length of the base and h is the height.

Formal area proofs are often based on the cut-and-paste method. For instance, the key steps in a proof of Theorem 100 could be those below.

Given: PACT is a \square .

RT is an altitude to \overline{PA} . Prove: $A_{PACT} = (PA) (RT)$

516 Chapter 11 Area