#### 10-6: More Angle-Arc Theorems

### Review

| If the vertex of the angle is the circle | Then use this formula to find the angle's measure: |
|------------------------------------------|----------------------------------------------------|
| IN                                       | arc tarc                                           |
| ON                                       | arc                                                |
| OUT                                      | ar <u>c-a</u> rc                                   |

## **Objectives**

After studying this section, you will be able to

- Recognize congruent inscribed and tangent-chord angles
- Determine the measure of an angle inscribed in a semicircle
- Apply the relationship between the measures of a tangent-tangent angle and its minor arc

Theorem 89 If two inscribed or tangent-chord angles intercept the same arc, then they are congruent.

Given: X and Y are inscribed angles intercepting arc AB.

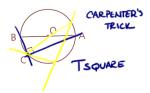
Conclusion:  $\angle X \cong \angle Y$ 



Theorem 91 An angle inscribed in a semicircle is a right angle.

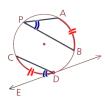
Given:  $\overline{AB}$  is a diameter of  $\bigcirc O$ .

Prove:  $\angle C$  is a right angle.



Theorem 90 If two inscribed or tangent-chord angles intercept congruent arcs, then they are congruent.

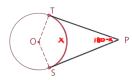
If  $\overrightarrow{ED}$  is the tangent at D and  $\widehat{AB}\cong\widehat{CD}$ , we may conclude that  $\angle P\cong \angle CDE$ .



Theorem 92 The sum of the measures of a tangent-tangent angle and its minor arc is 180.

Given:  $\overline{PT}$  and  $\overline{PS}$  are tangent to circle O.

Prove:  $m \angle P + m\widehat{TS} = 180$ 





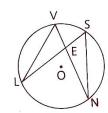
# Classwork

Problem 1

Given: ⊙O

Conclusion:  $\triangle$ LVE  $\sim \triangle$ NSE,

$$EV \cdot EN = EL \cdot SE$$



Proof

$$2 \angle V = \angle S$$

$$3 \angle L \cong \angle N$$

4 
$$\triangle$$
LVE  $\sim \triangle$ NSE

$$5 \frac{EV}{SE} = \frac{EL}{EN}$$

$$6 \text{ EV} \cdot \text{EN} = \text{EL} \cdot \text{SE}$$

1 GIVEN

3 Same as 2

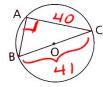
4 A A~

1 A A~ 5 ~/S ⇒ corr. sds. prop. 6 means extense product.

Problem 2

In circle O, BC is a diameter and the radius of the circle is 20.5 mm.

Chord AC has a length of 40 mm. Find AB.



Solution

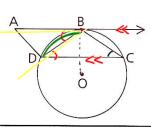
Since ∠A is inscribed in a semicircle, it is a right angle. By the Pythagorean Theorem,

(40+1) (40+1) FOIL

1600+80+1 **Problem 3** 

Given: ⊙O with  $\overrightarrow{AB}$  tangent at B,  $\overrightarrow{AB} \parallel \overrightarrow{CD}$ 

Prove:  $\angle C \cong \angle BDC$ 



 $AB^2 + 40^2 = 41^2$   $AB = \sqrt{41^2 - 40^2}$ 

Proof

1 ÀB is tangent to ⊙O.

2 ÀB ∥ CD

 $3 \angle ABD \cong \angle BDC$ 

 $4 \angle C \cong \angle ABD$ 

 $5 \angle C \cong \angle BDC$ 

1 Given

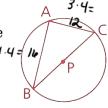
2 Given

5 transitive

#### 10-6: More Angle-Arc Theorems

3 In  $\bigcirc$ P,  $\overline{BC}$  is a diameter, AC = 12 mm, and BA = 16 mm. Find the radius of the circle.

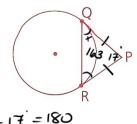
d=20 , r=10mm



4(345)

**4** Given:  $\overline{PQ}$  and  $\overline{PR}$  are tangent segments.  $\widehat{QR} = 163^{\circ}$ 

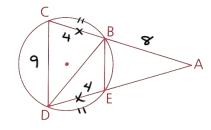
Find: a  $\angle P = 180 - 163 = 17^{\circ}$ 



alt+ELSA=180 . 2×+17=180 2×=163



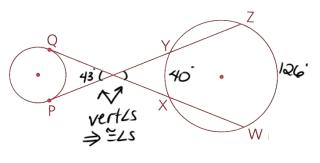
- **6** Given:  $\widehat{BC} \cong \widehat{ED}$ , AB = 8, BC = 4, CD = 9
  - **a** Are  $\overline{BE}$  and  $\overline{CD}$  parallel?
  - **b** Find BE.
  - **c** Is  $\triangle$ ACD scalene?



7 Given:  $\overrightarrow{PY}$  and  $\overrightarrow{QW}$  are tangents.  $\overrightarrow{WZ} = 126^{\circ}$ ,  $\overrightarrow{XY} = 40^{\circ}$ 

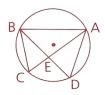
Find: PQ

$$xy = \frac{126-40}{2} = \frac{86}{2} = 43^{\circ}$$



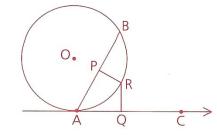
**18** Given:  $\widehat{BC} \cong \widehat{CD}$ 

Conclusion:  $\triangle ABC \sim \triangle AED$ 



**19** Given:  $\overrightarrow{AC}$  is tangent at A.  $\angle APR$  and  $\angle AQR$  are right  $\angle s$ . R is the midpoint of  $\overrightarrow{AB}$ .

Conclusion:  $\overline{PR} \cong \overline{RQ}$  (Hint: Draw  $\overline{AR}$ .)

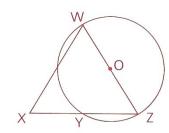


**20** Given:  $\triangle WXZ$  is isosceles, with  $\overline{WX} \cong \overline{WZ}$ .

 $\overline{WZ}$  is a diameter of  $\bigcirc O$ .

Prove: Y is the midpoint of  $\overline{XZ}$ .

(Hint: Draw  $\overline{WY}$ .)

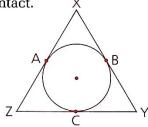


## Homework

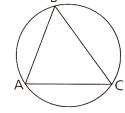
5 Given: A, B, and C are points of contact.

$$\widehat{AB} = 145^{\circ}, \angle Y = 48^{\circ}$$

Find: ∠Z

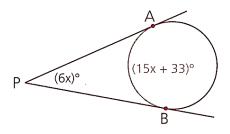


8 If  $\triangle ABC$  is inscribed in a circle and  $\widehat{AC} \cong \widehat{AB}$ , tell whether each of the following must be true, could be true, or cannot be true.

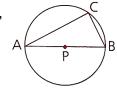


- a  $\overline{AB}\cong \overline{AC}$
- $\textbf{b} \ \overline{AC} \cong \overline{BC}$
- **c**  $\overline{AB}$  and  $\overline{AC}$  are equidistant from the center of the circle.
- **d**  $\angle B \cong \angle C$
- e ∠BAC is a right angle.
- $f \angle ABC$  is a right angle.

**9** In the figure shown, find  $m \angle P$ .



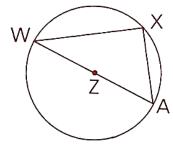
10 If  $\overline{AB}$  is a diameter of  $\bigcirc P$ , CB = 1.5 m, and CA = 2 m, find the radius of  $\bigcirc P$ .



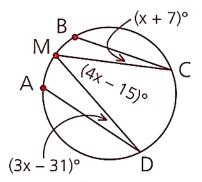
11 The radius of  $\bigcirc Z$  is 6 cm and  $\widehat{WX} = 120^{\circ}$ .

Find: a AX

**b** The perimeter of  $\triangle WAX$ 

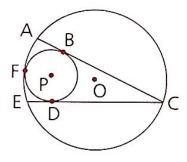


12 M is the midpoint of  $\widehat{AB}$ . Find  $\widehat{mCD}$ .



**15** Quadrilateral ABCD is inscribed in circle O. AB = 12, BC = 16, CD = 10, and  $\angle$ ABC is a right angle. Find the measure of  $\overline{AD}$  in simplified radical form.

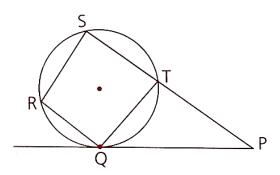
Circles O and P are tangent at F.  $\overline{AC}$  and  $\overline{CE}$  are tangent to  $\overline{\bigcirc}P$  at B and D. If  $\overline{DFB} = 223^{\circ}$ , find  $\overline{AE}$ .



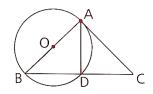
17 Given:  $\angle S = 88^{\circ}$ ,  $\widehat{QT} = 104^{\circ}$ ,  $\widehat{ST} = 94^{\circ}$ , tangent  $\overline{PQ}$ 

Find:  $\mathbf{a} \angle P$ 

b ∠STQ



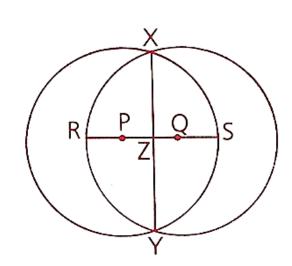
**21** Given:  $\overline{AC}$  is tangent to  $\bigcirc O$  at A. Conclusion:  $\triangle ADC \sim \triangle BDA$ 



**24** Given:  $\bigcirc P \cong \bigcirc Q$ , XY = 8,

RP = QS = 1

Find: PQ

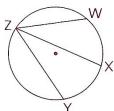


# Classwork

/12

Complete the problems on your own. Compare work with a partner. Discuss any differences, and revise. Hand in when completed (before the period ends).

1 Given: X is the midpt. of  $\widehat{WY}$ . Prove:  $\overrightarrow{ZX}$  bisects  $\angle WZY$ .

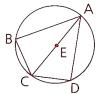


(4 points, 1 pt per reason)

| (4 points, 1 pt per reason)                |    |
|--------------------------------------------|----|
| S                                          | R  |
| 1. X is the midpoint of WY                 | l. |
| $\lambda. \widehat{WX} \cong \widehat{XY}$ | ۵. |
| 3. ∠WZX ≅ ∠XZY                             | 3. |
| 4. ZX bisects /WZY                         | Ч. |

**2** Given:  $\bigcirc E$  with diameter  $\overline{AC}$ ,  $\overline{BC} \cong \overline{CD}$ 

Conclusion:  $\triangle ABC \cong \triangle ADC$ 



(5 points, wholistic)

<sup>13</sup> A rectangle with dimensions 18 by 24 is inscribed in a circle. Find the radius of the circle.