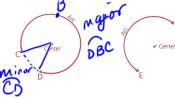
Acc Geo - 🚙

10-3: Arcs of a Circle

Ms. Kresovic 21 January 2016


Objectives

After studying this section, you will be able to

- Identify the different types of arcs
- Determine the measure of an arc (vs length s)
- Recognize congruent arcs
- Apply the relationships between congruent arcs, chords, and central angles

Types of Arcs

Definition

An arc consists of two points on a circle and all points on the circle needed to connect the points by a single path.

Definition

The center of an arc is the center of the circle of which the arc is a part.

Definition

A central angle is an angle whose vertex is at the center of a circle.

Radii \overline{OA} and \overline{OB} determine central angle AOB.

Definition

A minor arc is an arc whose points are on or between the sides of a central angle.

Central angle APB determines minor arc AB.

Definition

A major arc is an arc whose points are on or outside of a central angle.

Central angle CQD determines major arc CD.

Definition

A semicircle is an arc whose endpoints are the end-

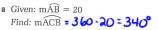
points of a diameter.
$$m = 180^{\circ}$$

Length = $\frac{1}{5}$ C

Arc EF is a semicircle.

The symbol \frown is used to label arcs. The minor arc joining A and B is called \widehat{AB} . The major arc joining A and B is called \widehat{AXB} . (The extra point, X, is named to make it clear that we are referring to the arc from A to B by way of point X. This helps to avoid confusion when a major arc or a semicircle is being discussed.)

The Measure of an Arc


Definition

The measure of a minor arc or a semicircle is the same as the measure of the central angle that intercepts the arc.

Definition

The measure of a major arc is 360 minus the measure of the minor arc with the same endpoints.

Example

b Given: $m \angle XQY = 110$ Find: mXDY = 360

Congruent Arcs

Two arcs that have the same measure are not necessarily congruent arcs. In the concentric circles shown, mAB = 65 and $\widehat{mCD} = 65$, but \widehat{AB} and \widehat{CD} are not congruent. Under what conditions, do you think, will two arcs be congruent? If r = 0

mco = m AB = 65°

Definition

Two arcs are congruent whenever they have the same measure and are parts of the same circle or congru-

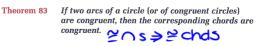
We may conclude that $\widehat{AB} \cong \widehat{CD}$.

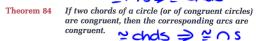
If $\bigcirc P \cong \bigcirc Q$, we may conclude that $\widehat{EF} \cong \widehat{GH}$.

Relating Congruent Arcs, Chords, and Central Angles

In the diagram, points A and B determine one central angle, one chord, and two arcs (one major and one minor).

You can readily prove the following


If two central angles of a circle (or of congruent Theorem 79 circles) are congruent, then their intercepted arcs are congruent. ≅ centLs ⇒ ≅∩s


If two arcs of a circle (or of congruent circles) are Theorem 80 congruent, then the corresponding central angles are congruent. 2∩s⇒≅cent∠s

If two central angles of a circle (or of congruent Theorem 81 circles) are congruent, then the corresponding

Theorem 82 If two chords of a circle (or of congruent circles) are congruent, then the corresponding central angles are congruent. 2 chds > 2 cent 45

Name

Acc Geo -

10-3: Arcs of a Circle

Problem 1

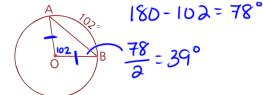
Given: ⊙B;

D is the midpt. of \widehat{AC} .

Conclusion: \overrightarrow{BD} bisects $\angle ABC$.

Proof

- 1 \bigcirc B; D is the midpt. of \widehat{AC} .
- $2 \widehat{AD} \cong \widehat{DC}$
- $3 \angle ABD \cong \angle DBC$
- 4 \overrightarrow{BD} bisects $\angle ABC$.


- 2 mapt $\Rightarrow 2 \cap S$ 3 $2 \cap S \Rightarrow 2 \subset A$ 4 $2 \subseteq S \Rightarrow DiS$

Problem 2

If $\widehat{mAB} = 102$ in $\bigcirc O$, find $m \angle A$ and $m \angle B$ in $\triangle AOB$.

Solution

$$\widehat{AB} = 102^{\circ}$$

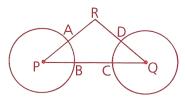
Problem 3

- a What fractional part of a circle is an arc of 36°? Of 200°?
- **b** Find the measure of an arc that is $\frac{7}{12}$ of its circle.

Solution

There are 360° in a whole \odot .

$$\frac{36^{\circ}}{360^{\circ}} = \frac{1}{10}$$

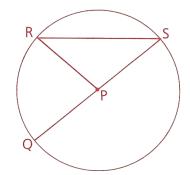

&
$$\frac{2\infty^{\circ}}{360}$$
 = $\frac{5}{9}$

Problem 4

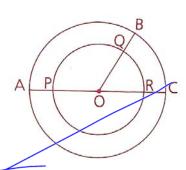
Given: (§) P and Q,
$$\angle P \cong \angle Q$$
, $\overline{AR} \cong \overline{RD}$

Prove: $\widehat{AB} \cong \widehat{CD}$ (Hint: First prove

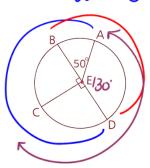
that $\bigcirc P \cong \bigcirc Q$.)

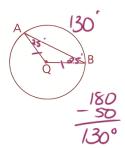

Proof

1 ® P and Q	1 Given
$2 \angle P \cong \angle Q$	2 Given
$3 \overline{RP} \cong \overline{RQ}$	3
$4 \overline{AR} \cong \overline{RD}$	4
$5 \overline{AP} \cong \overline{DQ}$	5
$6 \odot P \cong \odot Q$	6
$7 \widehat{AB} \cong \widehat{CD}$	7

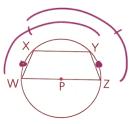

Acc Geo -

10-3: Arcs of a Circle


- 1 Match each item in the left column with the correct term in the right column.
 - a QRS 6
- 1 Radius
- 2 Diameter
- c RQS 5
- 3 Chord
- d RS 4
- 4 Minor arc
- e RS 3
- 5 Major arc
- f ∠RPQ 7
- 6 Semicircle
- g PS
- **7** Central angle


- 2 Given: Two concentric circles with center O; ∠BOC is acute.
 - a Name a major arc of the smaller circle. PRQ or OPR
 - h Name a minor arc of the larger circle. AB. CB
 - c What is $\widehat{mBC} + \widehat{mPO}? = 80^{\circ}$
 - d Which is greater, mBC or mPQ?
 - e Is BC congruent to QR?

- best diff lengths
- 3 In circle E, find each of the following.
 - a mBC = 90° c mACD = 130° e mADC
 - b mAD=130° d mBAD=180°



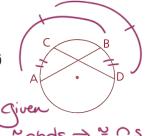
4 Given: $\bigcirc Q$, $\angle A = 25^{\circ}$ Find: mAB

5 Given: ⊙P, $\widehat{\text{WY}} \cong \widehat{\text{XZ}}$

Conclusion: $\overline{WX} \cong \overline{YZ}$

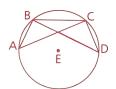
6 Given: $\bigcirc D$, $\angle B \cong \angle C$ Conclusion: $\widehat{AB} \cong \widehat{AC}$

- 1. GIVEN aptional
 2. Ry
 3. Subtract
 4. Parcy => Pchds



Name

Acc Geo -


1. AB & CD

7 Given: $\overline{AB} \cong \overline{CD}$ Conclusion: $\widehat{AC} \cong \widehat{BD}$

10-3: Arcs of a Circle

8 Given: $\bigcirc E$, $\overline{AB} \cong \overline{CD}$ Prove: $\overline{BD} \cong \overline{AC}$

Ms. Kresovic

21 January 2016

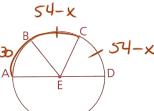
9 What fractional part of a circle is an arc that measures

a 8

(b)
$$\frac{240}{360} = \frac{24}{36} = \frac{2}{3}$$

10 Find the measure of an arc that is

 $argantize{3}{5}$ of its circle


b $\frac{5}{9}$ of its circle

c 70% of its circle

 $\frac{3}{5} = \frac{1}{360} = \frac{1}{5}$

 $\widehat{\text{mCD}} = 54 - x$

Given: \overline{AD} is a diameter of $\odot E$. = 180 C is the midpoint of \widehat{BD} . $q_{\kappa+3}$ $\widehat{mAB} = 9x + 30$,

Find: m∠AEC

$$7x + 138 = 180$$
 $AB = 9(6) + 30 = 84$
 $x = 6$ $BC = 54 - 6 = 48$

12 Find the length of a chord that cuts off an arc measuring 60 in a circle with a radius of 12.

Name Ms. Kresovic Acc Geo - 10-3: Arcs of a Circle 21 January 2016

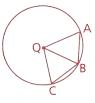
Name

Acc Geo -

NAM

10-3: Arcs of a Circle

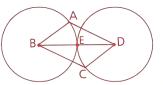
Ms. Kresovic 21 January 2016 Adv Geo 10-3, 11 Apr 13


- **13** Find the length of each arc described. (The length is a fractional part of the circumference.)
 - a An arc that is $\frac{5}{8}$ of the circumference of a circle with radius 12
 - **b** An arc that has a measure of 270 and is part of a circle with radius 12

14 \overline{AB} is a chord of circle E, and C is the midpoint of \widehat{AB} . Prove that \overrightarrow{EC} is the perpendicular bisector of chord \overline{AB} .

15 Given: ⊙Q;

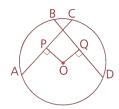
B is the midpt. of \widehat{AC} .


Conclusion: $\angle A \cong \angle C$

16 Given: $\bigcirc B \cong \bigcirc D$,

 $\widehat{AE} \cong \widehat{CE}$

Prove: ABCD is a \square .

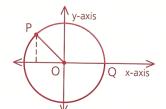

10-3: Arcs of a Circle

17 Given: ⊙O,

$$\frac{\overline{OP}}{\overline{OP}} \perp \overline{\overline{AC}}, \overline{\overline{OQ}} \perp \overline{\overline{BD}},$$

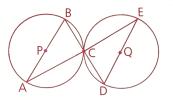
$$\overline{\overline{OP}} \cong \overline{\overline{OQ}}$$

Conclusion: $\widehat{AB} \cong \widehat{CD}$



18 A polygon is inscribed in a \odot if all its vertices lie on the ⊙. Find the measure of the arc cut off by a side of each of the following inscribed polygons.

- a A regular hexagon
- b A regular pentagon
- c A regular octagon


- **19** Point P is located at (-5, 5).
 - **a** Find the radius of \bigcirc O.
 - **b** Find the measure of \widehat{PQ} .

20 Given: $\bigcirc P \cong \bigcirc Q$,

 $\overline{BC} \cong \overline{CD}$

Conclusion: $\angle A \cong \angle E$

