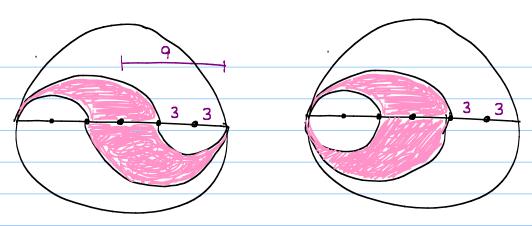

Note Title 2/15/2016

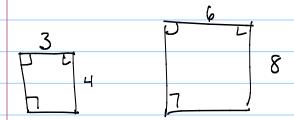
Let a = 2, b = 3, and c = 7. Then calculate the area of the enclosed region.



$$2 \text{ rt } 2s - \text{ sector}$$

$$(2\frac{1}{2}) 12 \cdot 4/3 - \frac{120}{340} (r)^2 \pi$$

$$48\sqrt{3} - (\frac{1}{3})4 \cdot 4\sqrt{3} \cdot \sqrt{3} \pi$$


$$48\sqrt{3} - 16\pi$$

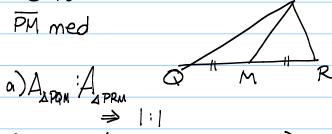
$$A - A_0 = A_{SHADE}$$

$$R^2 \pi - r \pi$$

$$6 \pi - 3 \pi = \pi (36-9) = 27\pi$$

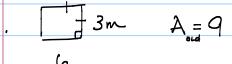
Sides
$$1:2$$

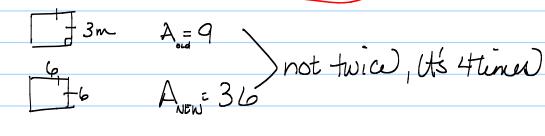
Areas $(1:2)^2 \Rightarrow 1:4$


11.8:

Class demo of 11.8: 1a, 3c, 9 Hero & Brahmagupta

Homework 11.7: 3-15.


11.8.1A:
$$A = \sqrt{S(s-a)(s-b)(s-c)}$$
 $S = \frac{a+b+c}{2}$
 $a = 3$ $(e(3)(a)(1))$
 $b = 4$ $\sqrt{3}(e(3)(a)(1))$
 $5 = \sqrt{3}(e(3)(a)(1))$
 $5 = \sqrt{3}(e(3)(a)(1))$
 $5 = \sqrt{3}(e(3)(a)(1))$
 $5 = \sqrt{3}(e(3)(a)(1))$


3. PM med

R Thm 110 p 346

$$4 \cdot \left(\frac{4}{9}\right)^2 = \frac{16}{81}$$

ratio of sides 1:4 areas 1:16

tratio of sides 7:4: Lat areas = 49:16

9. Frid rat area I: II

natsds: 8:15

areas > 64:225

$$\frac{A_{A} : \frac{1}{2} tO(14)}{A_{B} : \frac{1}{10(14)}} = \boxed{1:2}$$

h-: anh	a) 1 s 0 d		4 - 4 -	// 1 4		
15: Natio	of H3 of	در ک	Nadle	9 a /		