| Ch. Sec | Axiom |
| :--- | :--- | :--- |
| Definition
 (D) | Lines, rays, or segments that intersect at right angles are___(\perp). |

T	If angles are complementary to the same angle, then they are congruent.

Statements	Reasons
$1 . \angle 3 \operatorname{comp} \angle 4$	
$2 . \mathrm{m} \angle 3+\mathrm{m} \angle 4=$	
3.	
$4 . \angle 5 \operatorname{comp} \angle 4$	
5. $\mathrm{m} \angle 5+\mathrm{m} \angle 4=$	
6.	
$7 . \angle 3 \cong \angle 5$	

$\mathrm{T} \quad$ If angles are complementary to congruent angles, then they are congruent.

Given: $\quad \angle \mathrm{F}$ comp $\angle \mathrm{G}$
$\angle \mathrm{H} \operatorname{comp} \angle \mathrm{J}$
$\angle \mathrm{G} \cong \angle \mathrm{J}$
Prove: $\angle \mathrm{F} \cong \angle \mathrm{H}$

Statements	Reasons
1. $\angle \mathrm{F}$ comp $\angle \mathrm{G}$	1.
2. $\angle \mathrm{F}+\angle \mathrm{G}=$	2.
3. $\angle \mathrm{F}=$	3.
4. $\angle \mathrm{H} \operatorname{comp} \angle \mathrm{J}$	4.
5. $\angle \mathrm{H}+\angle \mathrm{J}=$	5.
6. $\angle \mathrm{H}=$	6.
7. $\angle \mathrm{G} \cong \angle \mathrm{J}$	7.
8. $\angle \mathrm{F} \cong \angle \mathrm{H}$	8.

2.6	If segments (or angles) are congruent, their like multiples are congruent. (Multiplication Property)
T segments (or angles) are congruent, their like divisions are congruent. (Division Property)	

