AMDG
Name
3: Congruent Triangles
Ms. Kresovic
Adv Geo -
3.1: What Are Congruent Figures?

Date:

## Objectives

After studying this section, you will be able to

- Understand the concept of congruent figures
- Accurately identify the corresponding parts of figures


## After each paragraph, write (underline, or highlight) a couple of words (no more than one sentence) that identifies its purpose or point.

## Congruent Figures

Although you learned a bit about the art of proof in Chapters 1 and 2 , you may still be uneasy about proofs. You will, however, find your confidence growing as you work with triangles in this chapter. What you discover about congruent triangles will help you understand the characteristics of the other geometric figures you will meet in your studies.

In general, two geometric figures are congruent if one of them could be placed on top of the other and fit exactly, point for point, side for side, and angle for angle. Congruent figures have the same size and shape.


Every triangle has six parts-three angles and three sides. When we say that $\triangle \mathrm{ABC} \cong \triangle \mathrm{FED}$, we mean that $\angle \mathrm{A} \cong \angle \mathrm{F}$, $\angle \mathrm{B} \cong \angle \mathrm{E}$, and $\angle \mathrm{C} \cong \angle \mathrm{D}$ and that $\overline{\mathrm{AB}} \cong \overline{\mathrm{FE}}$, $\overline{\mathrm{BC}} \cong \overline{\mathrm{ED}}$, and $\overline{\mathrm{CA}} \cong \overline{\mathrm{DF}}$.


The order of the letters matter! Here's why: Even without a picture, we know - just by the statement - which segments and which angles are congruent.

$$
\triangle \mathrm{ABC} \cong \triangle \mathrm{FEDhas} \text { congruent segments: }
$$

$\triangle \mathrm{ABC} \cong \triangle \mathrm{FED}$ has congruent angles:

Definition
Congruent triangles $\Leftrightarrow$ all pairs of corresponding parts are congruent.

Remember, an arrow symbol ( $\Rightarrow$ ) means "implies" ("If . . .,
then . . .'). If the arrow is double ( $\Leftrightarrow$ ), the statement is reversible.

Would the statement $\triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}$ be correct? The answer is 1o! Corresponding letters must match in the correspondence.


Congruent segments of $\triangle A B C \cong \triangle F E D$
Congruent segments of $\triangle A B C \cong \triangle D E F$

Are these lists the same?
Does the order of the letters in the name of the triangle matter?

Definition Congruent polygons $\Leftrightarrow$ all pairs of corresponding parts are congruent.

Writing proofs involving congruent triangles will be unnecessarily tedious unless we shorten some of the reasons. From now on, therefore, we will refer to many theorems and postulates in proofs only by the names or abbreviations we have assigned. You may wish to review the following properties, presented in Chapter 2:

Addition Property Multiplication Property Transitive Property
Division Property Subtraction Property Substitution Property
Fold the paper at $\overline{K T}$ so that you can see that I, when reflected over $\overline{K T}$, is located at $E$.

## More About Correspondences

Notice that $\triangle \mathrm{KET}$ is a reflection of $\triangle \mathrm{KIT}$ over $\overline{\mathrm{KT}}$.
$\angle I$ reflects onto $\angle E$.
$\angle 1$ reflects onto $\angle 2$. $\angle 3$ reflects onto $\angle 4$. $\overline{\mathrm{KI}}$ reflects onto $\overline{\mathrm{KE}}$. $\overline{\mathrm{IT}}$ reflects onto $\overline{\mathrm{ET}}$.


Notice also that $\overline{\mathrm{KT}}$ is the sixth corresponding part. $\overline{\mathrm{KT}}$ reflects onto itself. In fact, it is actually a side shared by the two triangles. We often need to include a shared side in a proof. Whenever a side or an angle is shared by two figures, we can say that the side or angle is congruent to itself. This property is called the Reflexive Property.
$\angle P Q R$, in $\triangle P Q R$, is congruent to $\angle S Q T$, in $\triangle$ SQT, by the Reflexive Property.

Notice that $\angle \mathrm{SQT}$ and $\angle \mathrm{PQR}$ are actually different names for the same angle. We used different names so that you could see that the angle belonged to two different triangles.


Triangles may overlap! A colored pencil (orange, yellow, pink, light blue) may help you in these diagrams.

## Other transformations (slides and rotations) may be shown:

The two figures shown are congruent.

$$
\mathrm{PQRST} \cong V W X Y Z
$$

The correspondence is evident if we slide PQRST onto VWXYZ.


The triangles at the right are congruent. To determine the correspondence of the triangles, we can rotate $\triangle \mathrm{FGH}$ onto $\triangle \mathrm{LKH}$ about H .


Angle 1 at H rotates onto angle 2 at H . Thus, all six pairs of corresponding parts are congruent.


## Part Two: Sample Problems

In the following two problems, try to justify each conclusion with one of the properties presented in Chapter 2 and in this section.
Problem $1 \quad$ Given: M and N are midpoints.

$$
\begin{aligned}
& \overline{\mathrm{DC}} \cong \overline{\mathrm{AB}}, \overline{\mathrm{AB}} \cong \overline{\mathrm{DB}}, \\
& \angle 1 \cong \angle 4, \angle 2 \cong \angle 3
\end{aligned}
$$



Conclusions: a $\angle \mathrm{ADC} \cong \angle \mathrm{ABC}$
b $\overline{\mathrm{CM}} \cong \overline{\mathrm{AN}}$
c $\overline{\mathrm{BD}} \cong \overline{\mathrm{DB}}$
d $\overline{\mathrm{DC}} \cong \overline{\mathrm{DB}}$

Axiom Bank:
Match these reasons to the conclusions at left.
Addition
Subtraction
Multiplication
Division
Reflexive
Symmetric
Transitive

Problem $2 \quad$ Given: $\overrightarrow{\mathrm{FP}}$ and $\overrightarrow{\mathrm{GP}}$ are angle bisectors. $\angle 5$ is an acute angle. $\angle 5 \cong \angle 7, \overline{\mathrm{PF}} \cong \overline{\mathrm{PG}}, \overline{\mathrm{QG}} \cong \overline{\mathrm{FR}}$


Conclusions: a $\angle \mathrm{QFG} \cong \angle \mathrm{RGF}$
b $\overline{\mathrm{QP}} \cong \overline{\mathrm{PR}}$
c $\angle 7$ is an acute angle.
d $\angle \mathrm{FER} \cong \angle \mathrm{GEQ}$

## Problem 3

Draw the rotation of $\triangle \mathrm{PQR} 90^{\circ}$ counter-clockwise about 0 . Label its vertices with their coordinates.


## Homework

In problems 1-3, indicate which triangles are congruent. Be sure to have the correspondence of letters correct.

1 Why is $\overline{\mathrm{RC}} \cong \overline{\mathrm{RC}}$ ?


2 E is the midpt. of $\overline{\mathrm{TP}}$.


In problems 4 and 5, use the "prime" notation, that is $P\left(x_{1}, y_{1}\right)$ once transformed is noted as $P^{\prime}\left(x_{2}, y_{2}\right)$.

4 a Copy $\triangle P Q R$. Draw its reflection over the x -axis and give the coordinates of the vertices.

c Copy $\triangle \mathrm{PQR}$. Slide it 3 units to the left and give the coordinates of the vertices.

b Draw the slide of $\triangle \mathrm{PQR}$ along ray $\overrightarrow{\mathrm{PR}}$ so that $P$ is at $O$, and label its vertices with their coordinates.


5 a Draw the rotation of $\triangle \mathrm{PQR} 180^{\circ}$ clock wise about O . Label its vertices with their coordinates.

c. Draw the reflection of $\triangle P Q R$ over the $y$-axis and label its vertices with their coordinates.


