Ms. Kresovic
Name \qquad AMDG

Adv Geo \qquad Congruent Triangles (ch 3) Mixed Practice Date \qquad /45
Directions: Complete each of the problems. Ignore the numbering, the problems are mixed up to allow for room to write and keep it to one page. (The evens are from the chapter 3 review in the text. See those pages if something is difficult to read.) This is due at the end of the period. You may work together, use notes, and your text. Please do your own work, and do not allow another to copy yours. This will be graded. Each problem is 5 points. Proof might - might - be awarded extra credit for organization, marking diagrams, and chronology. USE PENCIL!

1 Given: $\angle 7 \cong \angle 8$ $\angle M \cong \angle R$
Conclusion: $\triangle \mathrm{MOS} \cong \triangle \mathrm{RPS}$

6 Given: $\overline{\mathrm{DG}} \cong \overline{\mathrm{JF}}$,
$\overline{\mathrm{DE}} \cong \overline{\mathrm{JH}}$,
$\overline{\mathrm{EG}} \cong \overline{\mathrm{HF}}$
Prove: $\triangle H C E$ is isosceles.

3. In $\triangle R Q P, R P>Q P>R Q$. Order the angles from largest to smallest:

12 Given: $\overline{\mathrm{AD}} \cong \overline{\mathrm{BC}}$, $\angle \mathrm{DAB} \cong \angle \mathrm{CBA}$
Prove: $\triangle \mathrm{ABE}$ is isosceles.

10) Use the diagram below, and complete the table.

Find the ...	Area	Circumference
Exact		
Estimated to nearest tenth		

16 Given: $\triangle \mathrm{NEW} \cong \triangle \mathrm{CAR}, \mathrm{EN}=11, \mathrm{AR}=2 \mathrm{x}-4 \mathrm{y}, \mathrm{NW}=\mathrm{x}+\mathrm{y}$, $C A=4 x+y, E W=10$
Draw the triangles and find CR.
B Given: $\triangle \mathrm{RST} \cong \triangle \mathrm{DFE}, \angle \mathrm{R}=50^{\circ}, \angle \mathrm{T}=40^{\circ}, \angle \mathrm{E}=(\mathrm{y}+10)^{\circ}$, $\angle \mathrm{S}=90^{\circ}, \angle \mathrm{D}=(\mathrm{x}+20)^{\circ}, \angle \mathrm{F}=(\mathrm{z}-30)^{\circ}$
Find: The values of x, y, and z (Draw your own diagram for this problem.)
15.

Given: $\angle 1 \cong \angle 2$ $\overline{\mathrm{NO}} \cong \overline{\mathrm{PO}}$
Conclusion: $\overrightarrow{R O}$ bisects LNRP.

