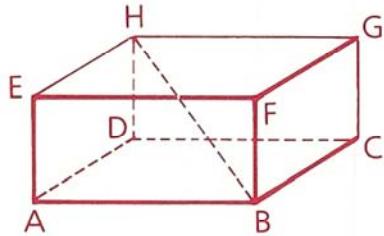
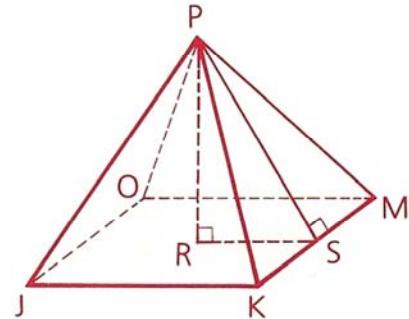


NAME
 Ms. Kresovic
 Adv Geo -
 Mon 18 Mar 13

9.8: The Pythagorean Theorem and Space Figures


9.8: 413/1-6, 11-15

Objective


After studying this section, you will be able to

- Apply the Pythagorean Theorem to solid figures

Part One: Introduction

Rectangular Solid

Regular Square Pyramid

Many of the problems in this section will involve the two figures shown above.

In the rectangular solid:

ABFE is one of the 6 rectangular **faces**

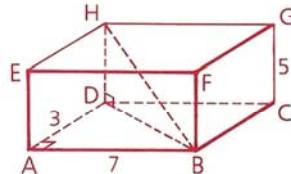
\overline{AB} is one of the 12 **edges**

\overline{HB} is one of the 4 **diagonals** of the solid. (The others are \overline{AG} , \overline{CE} , and \overline{DF} .)

In the regular square pyramid:

JKMO is a square, and it is called the **base**

P is the **vertex**


\overline{PR} is the **altitude** of the pyramid and is perpendicular to the base at its center.

\overline{PS} is called a **slant height** and is perpendicular to a side of the base.

Note A **cube** is a rectangular solid in which all edges are congruent.

Part Two: Sample Problems

Problem 1 The dimensions of a rectangular solid are 3, 5, and 7. Find the diagonal.

Solution It does not matter which edges are given the lengths 3, 5, and 7. Let $AD = 3$, $AB = 7$, and $HD = 5$, and use the Pythagorean Theorem twice.

In $\triangle ABD$,

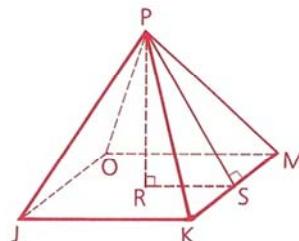
$$3^2 + 7^2 = (DB)^2$$

$$9 + 49 = (DB)^2$$

$$\sqrt{58} = DB$$

In $\triangle HDB$,

$$5^2 + (\sqrt{58})^2 = (HB)^2$$


$$25 + 58 = (HB)^2$$

$$\sqrt{83} = HB$$

The measure of the diagonal is $\sqrt{83}$.

Problem 2 Given: The regular square pyramid shown, with altitude \overline{PR} and slant height \overline{PS} , perimeter of $JKMO = 40$, $PK = 13$

Find: **a** JK **b** PS **c** PR

Solution

a $JK = \frac{1}{4}(40) = 10$

b The slant height of the pyramid is the \perp bis. of \overline{MK} , so $\triangle PSK$ is a right \triangle .

$$(SK)^2 + (PS)^2 = (PK)^2$$

$$5^2 + (PS)^2 = 13^2$$

$$PS = 12$$

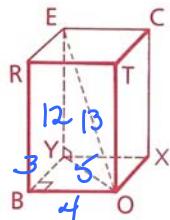
c The altitude of a regular pyramid is perpendicular to the base at its center. Thus, $RS = \frac{1}{2}(JK) = 5$, and $\triangle PRS$ is a right \triangle .

$$(RS)^2 + (PR)^2 = (PS)^2$$

$$5^2 + (PR)^2 = 12^2$$

$$25 + (PR)^2 = 144$$

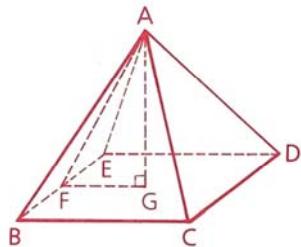
$$PR = \sqrt{119}$$

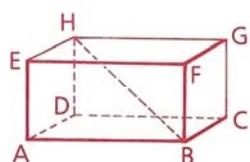

NAME
 Ms. Kresovic
 Adv Geo -
 Mon 18 Mar 13

9.8: The Pythagorean Theorem and Space Figures

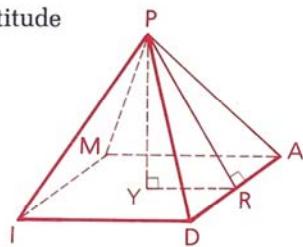
9.8: 413/1-6, 11-15

1 Given: The rectangular solid shown,
 $BY = 3$, $OB = 4$, $EY = 12$


Find: a YO, a diagonal of face BOXY 5
 b EO, a diagonal of the solid 13


2 Find the diagonal of a rectangular solid whose dimensions are 3, 4, and 5.

3 Given: Regular square pyramid ABCDE,
 with slant height \overline{AF} , altitude \overline{AG} ,
 and base BCDE;
 perimeter of BCDE = 40,
 $\angle AFG = 60^\circ$


Find: The altitude and the slant height

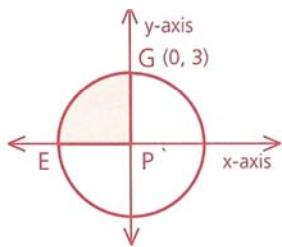
4 Given: The rectangular solid shown,
 $GC = 8$, $HG = 12$, $BC = 9$
 Find: a HB, a diagonal of the solid
 b AG, another diagonal of the solid

5 Given: The regular square pyramid shown, with altitude \overline{PY} and slant height \overline{PR} ,
 $ID = 14$, $PY = 24$

Find: a AD

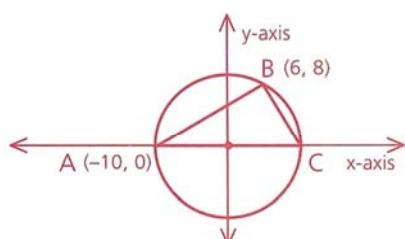
b YR

PR


d The perimeter of base AMID

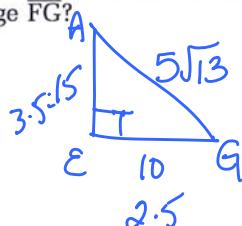
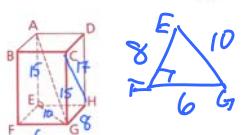
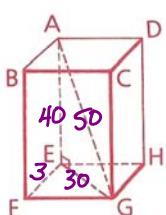
- A diagonal of the base (not shown in the diagram)

6 Find the slant height of a regular square pyramid if the altitude is 12 and one of the sides of the square base is 10.

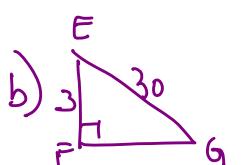

11 Given: $\odot P$ as shown

Find: a The coordinates of point E
 b The area of sector EPG to the nearest tenth
 c The length of \widehat{GE} to the nearest tenth

12 Given: Diagram as marked




Find: AB (the length of \overline{AB})

13 ABCDEFGH is a rectangular solid.


a If face diagonal \overline{CH} measures 17, edge \overline{GH} measures 8, and edge \overline{FG} measures 6, how long is diagonal \overline{AG} ? $5\sqrt{13}$

b) If diagonal \overline{AG} measures 50, edge \overline{AE} measures 40, and edge \overline{EF} measures 3, how long is edge \overline{FG} ?

$$5(2, 3, \sqrt{13})$$

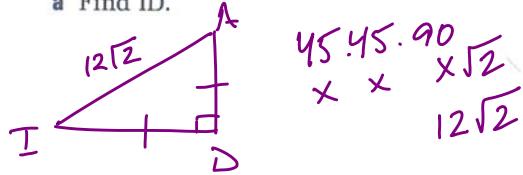
$$5(2^2 + 3^2 = 13)$$

$$3\left(1, \frac{1}{1}, 10\right)$$

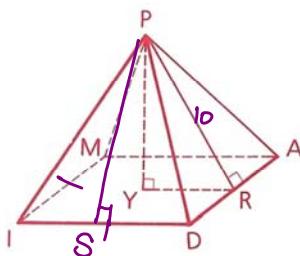
$$3(1^2 + \frac{1}{1}^2 = 10^2)$$

$$3(\frac{?}{?} = 100 - 1)$$

$$3(\frac{?}{?} = \sqrt{99})$$

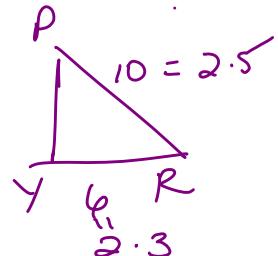

$$3(\sqrt{9 \cdot 11})$$

$$3(3\sqrt{11})$$

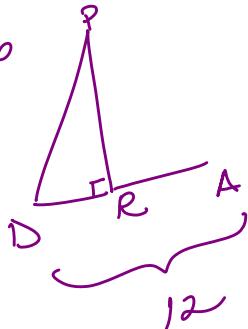

$$9\sqrt{11}$$

14 PADIM is a regular square pyramid. Slant height PR measures 10, and the base diagonals measure $12\sqrt{2}$.

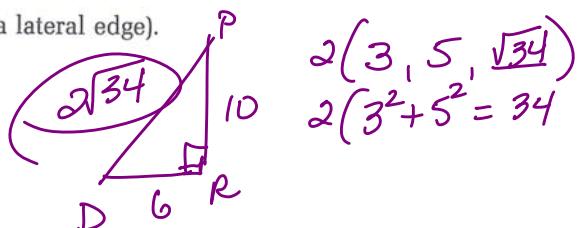
a Find ID.



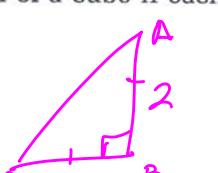
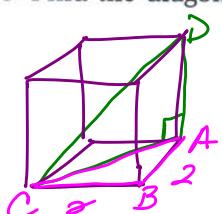
$$ID = 12$$



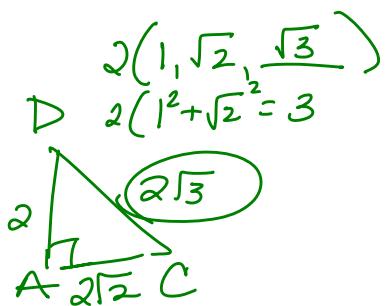
b Find the altitude of the pyramid. $YR = \frac{1}{2}(12) = 6$


$$PY = 2 \cdot 4 = 8$$

c Find RD. = 6

d Find PD (length of a lateral edge).



$$2(3^2 + 5^2 = 34)$$

15 Find the diagonal of a cube if each edge is 2.

$$\sqrt{2^2 + 2^2} = 2\sqrt{2}$$

$$2(1^2 + \sqrt{2}^2 = 3)$$

