Produced with a Trial Version of PDF Annotator - www.PDFAnnotator.com

5. Complete statements 2 \& 3 and reasons $2-4$. (5 points)			
Given: Two triangles, $\triangle \mathrm{ABC}$ and $\triangle \mathrm{ABD}$, standing on a desktop called f Prove: $\begin{aligned} & \overline{\mathrm{BC}} \cong \overline{\mathrm{BD}} \\ & \angle \mathrm{ABC} \cong \angle \mathrm{ABD} \\ & \overline{\mathrm{AC}} \cong \overline{\mathrm{AD}} \end{aligned}$			
Statements			Reasons
1.	Two triangles, $\triangle \mathrm{ABC}$ and $\triangle \mathrm{ABD}$, standing on a desktop called f $\begin{aligned} & \overline{\mathrm{BC}} \cong \overline{\mathrm{BD}} \\ & \angle \mathrm{ABC} \cong \angle \mathrm{ABD} \end{aligned}$	1.	Given
2.	$\overline{A B} \cong \overline{A B}$	2.	REFLEXIVE PROP.
3.	$\triangle \mathrm{ABC} \cong \triangle \triangle B D$	3.	$\operatorname{SAS}(1,1,2)$
4.	$\overline{\mathrm{AC}} \cong \overline{\mathrm{AD}}$	4.	CPCTC (3)

Produced with a Trial Version of PDF Annotator - www.PDFAnnotator.com
AMDG

6. Complete lines $2-4$. (6 points)		
Statements		Reasons
$\begin{array}{l\|l} \text { 1. S } & \overline{\mathrm{EK}} \cong \overline{\mathrm{HJ}} \\ & \overline{\mathrm{KG}} \cong \overline{\mathrm{JF}} \\ & \overline{\mathrm{EF}} \cong \overline{\mathrm{HG}} \end{array}$	1.	Given
2.s $\overline{E G} \cong \overline{F H}$	2.	ADD
3. $\triangle E K G \cong \triangle H J F$	3.	$\operatorname{sss}(1,1,2)$
4. $\angle E \cong \angle H$	4.	CPCTC (3)

7. Complete statements 2 \& 3 and reasons 2-4. (10 points)					
	$\begin{array}{ll} \text { Given: } & \odot O \\ & \angle R \cong \angle V \\ \text { Prove: } & \overline{\mathrm{PO}} \cong \overline{\mathrm{TP}} \cong \end{array}$				
Statements			Reasons		
		$\bigcirc 0$	1.	Given	
		$\overline{O R} \cong \overline{O V}$	2.	$\bigcirc \Rightarrow$ RAD\\|	
		$\overline{\mathrm{PO}} \cong \overline{\mathrm{OW}}$	3.	Given	
		$\overline{R P} \cong \overline{W W}$	4.	SUBTRACT (2\&3)	
		$\angle R \cong \angle V$	5.	Given	
		$\overline{R T} \cong \overline{T V}$	6.	LA \Rightarrow LX (5)	
		$\triangle T R P \cong \triangle T V W$	7.	SAS (456)	
		$\overline{T P} \cong \overline{T W}$	8.	CPCTC (7)	

AMD

Ms. Kresovic
NAME
Congruent Triangles (ch 3) Pop Test
Tue., 27 Oct. 2015

Supply the missing reasons in the proof for problem (5 points)

8. Given: $\angle E B C \cong \angle F C B$
$\angle A B F \cong \angle D C E$
$\overline{\mathrm{CH}} \cong \overline{\mathrm{FB}}$
Prove: $\triangle E H C$ is isosceles.

Statements
Reasons
A $1 \angle E B C \cong \angle F C B$
$2 \angle A B F$ is supp. to $\angle F B C$.
$\angle D C E$ is supp. to $\angle E C B$.
$3 \angle \mathrm{ABF} \cong \angle D C E$
A $4 \angle \mathrm{FBC} \cong \angle \mathrm{ECB}$
S $5 \overline{\mathrm{BC}} \cong \overline{\mathrm{BC}}$
$6 \triangle \mathrm{FBC} \cong \triangle \mathrm{ECB}$
$7 \overline{\mathrm{FB}} \cong \overline{\mathrm{EC}}$
$8 \overline{\mathrm{CH}} \cong \overline{\mathrm{FB}}$
$9 \overline{\mathrm{EC}} \cong \overline{\mathrm{CH}}$
$10 \triangle E H C$ is isosceles.

1 Given

2 If two angles form a straight angle, then they are supplementary.

3 Given

$4 \angle S$ SUPP TO $\cong \angle S \Rightarrow \cong \angle S(2 \& 3)$
5 REFLEXIVE
6 ASA (154)
7 CPCTC

8 Given

9 TRAN SITIVE
10 AT LEAST 2 SOS $\cong \Rightarrow$ SOSCELES. 1.

Exercises 9-13 are 3 points each.

14.	A triangle in which no two sides are congruent is called $\mathrm{a}(\mathrm{n})$$\quad$ triangle.	
15.	In the diagram, if $\overline{\mathrm{BC}} \cong \overline{\mathrm{CD}}$, then in order to prove $\triangle \mathrm{ABC}$ $\cong \triangle \mathrm{EDC}$ by HL, what additional two sides must be congruent?	
16.	In a triangle, what name is given to a line segment drawn from a vertex to the midpoint of the opposite side?	SCALENE

This has been a practice test. If this had been the actual test, it would have been shorter.
Answer key will be posted on the website. Please use this to help you study over the weekend.

Review the systems from chapters $1,2, \& 3$ in preparation for the test. Any of the axioms may used.

