

Name
Ms. Kresovic
Adv Geo -
12 March 2013

Special Right Triangles (9.7) Notes

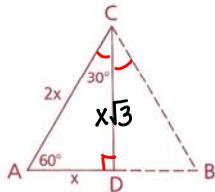
Objectives

After studying this section, you will be able to
 ■ Identify the ratio of side lengths in a $30^\circ-60^\circ-90^\circ$ triangle
 ■ Identify the ratio of side lengths in a $45^\circ-45^\circ-90^\circ$ triangle

Theorem 72 In a triangle whose angles have the measures 30° , 60° , and 90° , the lengths of the sides opposite these angles can be represented by x , $x\sqrt{3}$, and $2x$ respectively. ($30^\circ-60^\circ-90^\circ$ -Triangle Theorem)

Given: $\triangle ABC$ is equilateral.
 \overrightarrow{CD} bisects $\angle ACB$.

Prove: $AD:DC:AC = x:x\sqrt{3}:2x$



Proof: Since $\triangle ABC$ is equilateral, $\angle ACD = 30^\circ$, $\angle A = 60^\circ$, $\angle ADC = 90^\circ$, and $AD = \frac{1}{2}(AC)$.

By the Pythagorean Theorem, in $\triangle ADC$,

$$\begin{aligned} x^2 + (DC)^2 &= (2x)^2 \\ x^2 + DC^2 &= 4x^2 \\ -x^2 & \\ DC^2 &= 3x^2 \\ DC &= x\sqrt{3} \end{aligned}$$

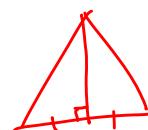
$(30^\circ, 60^\circ, 90^\circ)$
 $(x, x\sqrt{3}, 2x)$

$$\begin{array}{|c|} \hline (3, 4, 5) \\ \hline \end{array}$$

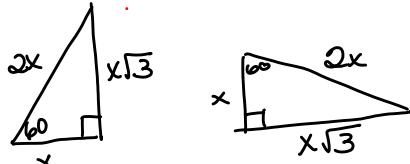
$$\begin{array}{|c|} \hline 7 \\ \hline 25 \\ 7^2 + x^2 = 25^2 \\ 49 + x^2 = 625 \\ x^2 = 576 \\ x = 24 \\ \hline \end{array}$$

$$\begin{array}{|c|} \hline (5, 12, 13) \\ \hline (8, 15, 17) \\ \hline (7, 24, 25) \\ \hline \end{array}$$

$$\begin{array}{|c|} \hline 7^2 + x^2 = 25^2 \\ x^2 = 625 - 49 \\ x^2 = 576 \\ x = 24 \\ \hline \end{array}$$



work through the rest now.



$$\begin{array}{|c|} \hline x \\ \hline x \\ \hline x \\ x^2 + x^2 = ?^2 \\ 2x^2 = ?^2 \\ x\sqrt{2} = ? \\ \hline \end{array}$$

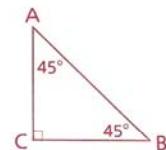
$(45^\circ, 45^\circ, 90^\circ)$
 $(x, x, x\sqrt{2})$

Theorem 73 In a triangle whose angles have the measures 45° , 45° , and 90° , the lengths of the sides opposite these angles can be represented by x , x , and $x\sqrt{2}$, respectively. ($45^\circ-45^\circ-90^\circ$ -Triangle Theorem)

Given: $\triangle ACB$, with $\angle A = 45^\circ$ and $\angle B = 45^\circ$.

Prove: $AC:CB:AB = x:x:x\sqrt{2}$

The proof of this theorem is left to you.



You will see $30^\circ-60^\circ-90^\circ$ and $45^\circ-45^\circ-90^\circ$ triangles frequently in this book and in other mathematics courses. Their ratios are worth memorizing now.

Six Common Families of Right Triangles

$30^\circ-60^\circ-90^\circ \Leftrightarrow (x, x\sqrt{3}, 2x)$	$(5, 12, 13)$
$45^\circ-45^\circ-90^\circ \Leftrightarrow (x, x, x\sqrt{2})$	$(7, 24, 25)$

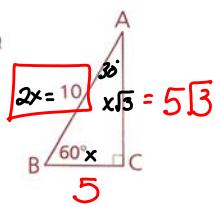
$(3, 4, 5)$

$(8, 15, 17)$

Examples

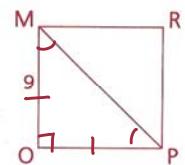
Problem 1 Type: Hypotenuse ($2x$) known
Find BC and AC.

$$2x = 10 \\ x = 5$$



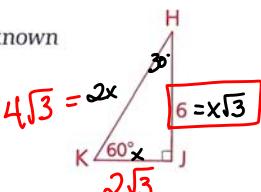
Problem 3 Type: Leg (x) known
MOPR is a square.
Find MP.

$$(45^\circ, 45^\circ, 90^\circ) \\ (x, x, x\sqrt{2}) \\ 9, 9, \text{ (circled)} 9\sqrt{2}$$



Problem 2 Type: Longer leg ($x\sqrt{3}$) known
Find JK and HK.

$$\frac{6}{\sqrt{3}} = x\sqrt{3} \quad \frac{6}{\sqrt{3}}$$

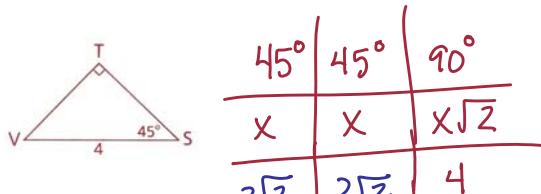


$$\frac{\sqrt{3}}{\sqrt{3}} \frac{6}{\sqrt{3}} = x \quad \text{rationalize the denominator}$$

$$\frac{6\sqrt{3}}{3} = x$$

$$2\sqrt{3} = x$$

Problem 4 Type: Hypotenuse ($x\sqrt{2}$) known
Find ST and TV.



$$\frac{\sqrt{2}}{\sqrt{2}} \frac{4}{\sqrt{2}} = x \frac{1}{\sqrt{2}}$$

$$\frac{4\sqrt{2}}{2} = x$$

2\sqrt{2}