

NAME_____

Ms. Kresovic

Adv Geo - period ____

Monday 11 March 2013

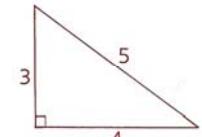
9.6: Families of Right Triangles

Objectives

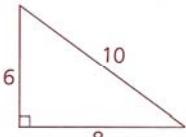
After studying this section, you will be able to

- Recognize groups of whole numbers known as Pythagorean triples
- Apply the Principle of the Reduced Triangle

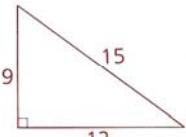
Definition Any three (whole numbers) that satisfy the equation

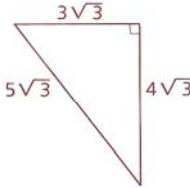

$$a^2 + b^2 = c^2$$

form a Pythagorean triple.


In rt Δ , $\text{leg}^2 + \text{leg}^2 = \text{hyp}^2$

Below is a set of right triangles you have encountered many times in this chapter. Do you see how the triangles are related? *All (3,4,5) family*


(leg, leg, hyp)


(3, 4, 5)

(6, 8, 10)

(9, 12, 15)

$(3\sqrt{3}, 4\sqrt{3}, 5\sqrt{3})$

\uparrow
scalar

$3(3, 4, 5)$

\uparrow

\uparrow

Other common families are

3 (5, 12, 13), of which (15, 36, 39) is another member

(7, 24, 25), of which (14, 48, 50) is another member

4 (8, 15, 17), of which $(4, 7\frac{1}{2}, 8\frac{1}{2})$ is another member

There are infinitely many families, including (9, 40, 41), (11, 60, 61), (20, 21, 29), and (12, 35, 37), but most are not used very often.

Principle of the Reduced Triangle

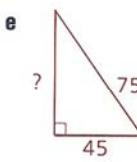
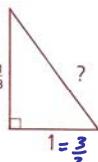
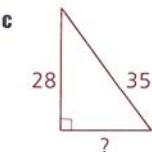
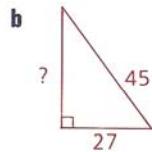
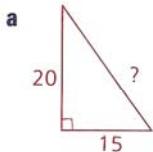
- 1 Reduce the difficulty of the problem by multiplying or dividing the three lengths by the same number to obtain a similar, but simpler, triangle in the same family.
- 2 Solve for the missing side of this easier triangle.
- 3 Convert back to the original problem.

FACTOR

SOLVE

DISTRIBUTE

NAME _____






Ms. Kresovic

Adv Geo - period _____

Monday 11 March 2013

9.6: Families of Right Triangles Homework

In problems 1–5, find the missing side in each triangle.

1 (3, 4, 5)

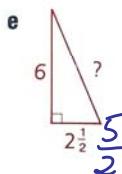
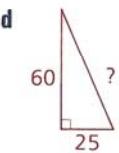
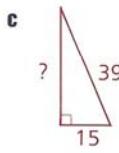
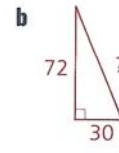
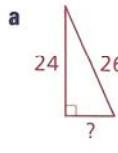
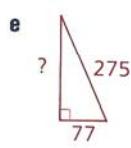
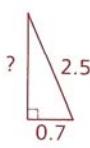
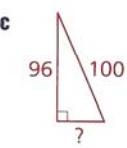
$$1a (15, 20, ?) \rightarrow 5 (3, 4, 5) \rightarrow 25$$

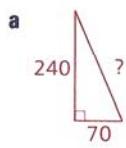
$$1b (27, ?, 45) \rightarrow 9 (3, 4, 5) \rightarrow 36$$

$$1c (? 28, 35) \rightarrow 7 (3, 4, 5) \rightarrow 21$$

$$1d \left(\frac{4}{3}, \frac{4}{3}, ?\right) \rightarrow \frac{1}{3} (3, 4, 5) \rightarrow \frac{5}{3}$$

$$1e (45, ?, 75) \rightarrow 15 (3, 4, 5) \rightarrow 60$$


$$2a (? 24, 24) \rightarrow 2 (5, 12, 13) \rightarrow 10$$

$$2b (30, 72, ?) \rightarrow 6 (5, 12, 13) \rightarrow 78$$

$$2c (15, ?, 39) \rightarrow 3 (5, 12, 13) \rightarrow 36$$

$$2d (25, 60, ?) \rightarrow 5 (5, 12, 13) \rightarrow 65$$

$$2e \left(\frac{5}{2}, \frac{12}{2}, ?\right) \rightarrow \frac{1}{2} (5, 12, 13) \rightarrow \frac{13}{2}$$

2 (5, 12, 13)**3 (7, 24, 25)**

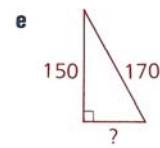
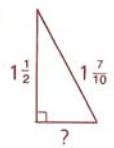
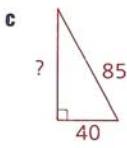
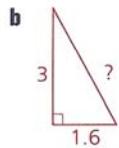
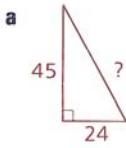
3a _____

4a _____

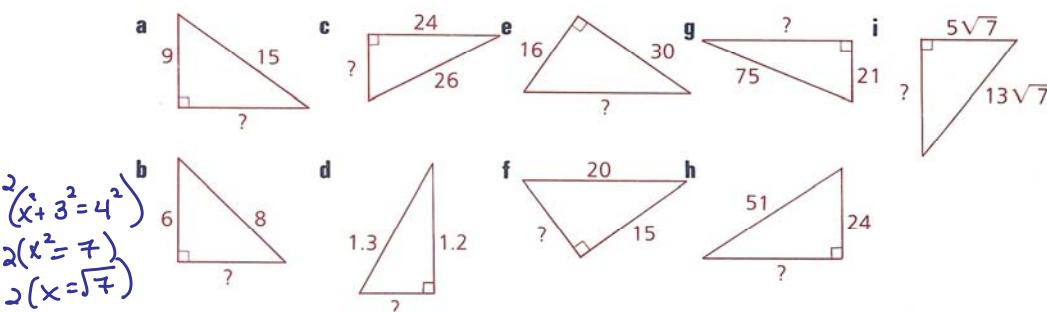
3b _____

4b _____

3c _____






4c _____

3d _____


4d _____

3e _____

4e _____

4 (8, 15, 17)

5 Mixed

$$5f: 5(x^2 + 3^2 = 4^2)$$

$$5(x^2 = 7)$$

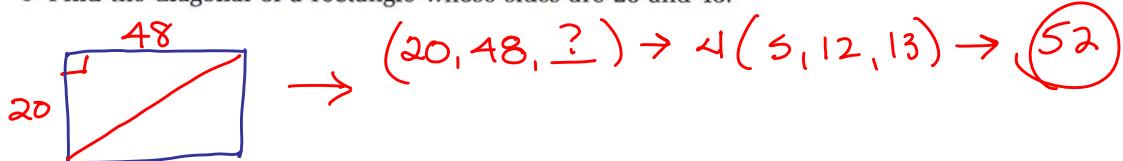
$$5(x = \sqrt{7})$$

$$5a (9, ?, 15) \rightarrow 3(3, 4, 5) \rightarrow 12$$

$$5b (?, 6, 8) \rightarrow 2(?, 3, 4) \rightarrow 2(x^2 + 3^2 = 4^2) \rightarrow 2(x^2 = 7) \rightarrow 2(x = \sqrt{7}) \rightarrow 2\sqrt{7}$$

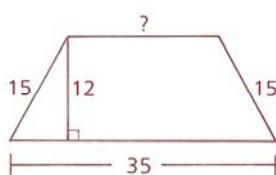
$$5c (?, 24, 26) \rightarrow 2(5, 12, 13) \rightarrow 10$$

$$5d (1, 1.2, 1.3) \rightarrow .1(5, 12, 13) \rightarrow .5$$


$$5e (16, 30, ?) \rightarrow 2(8, 15, 17) \rightarrow 34$$

$$5f (?, 15, 20) \rightarrow 5(?, 3, 4) \rightarrow 5\sqrt{7}$$

5h _____


5i _____

6 Find the diagonal of a rectangle whose sides are 20 and 48.

7 Find the perimeter of an isosceles triangle whose base is 16 dm and whose height is 15 dm.

8 Find the length of the upper base of the isosceles trapezoid.

