\cong
Congruent is Similar ss
\cong sides, $\cong m<s \quad$ sides proportional

SSS
GAS
ASA
HL
AIS

AA

$$
\frac{3}{6}=\frac{4}{8}=\frac{5}{10}
$$

SSS

$$
\frac{3}{6}=\frac{4}{8}
$$

SAS~

1 Given: $\angle \mathrm{A} \cong \angle \mathrm{D}$

Prove: $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$
$1 \angle A \cong \angle D, \angle 2 \cong \angle 4$ 1 Given
$2 \angle 1 \operatorname{supp} \angle 2$
$\angle 3$ supp $\angle 4$
$3 \angle I \cong \angle 3$
$4 \triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$
2 st L \Rightarrow suppLS
$3 \angle S$ SLYP to $\cong \angle S \Rightarrow \cong \angle S$

4 Given: $\overline{\mathrm{AC}} \cong \overline{\mathrm{AE}}$
$\angle 2 \cong \angle 4$

Prove: $\quad \triangle B C D \sim \triangle F E D$

$1 \overline{\mathrm{AC}} \cong \overline{\mathrm{AE}}$
$2 \angle C \cong \angle E$
$3 \angle \mathrm{CBD} \cong \angle \mathrm{EFD}$
$4 \quad \triangle \mathrm{BCD} \sim \triangle \mathrm{FED}$
1 Given
$2\langle X \Rightarrow \Delta \lambda$
3 Given
4 AA ~

12 Given: $\overline{\mathrm{SP}}$ alt from S to $\overline{\mathrm{NR}}$ $\overline{\mathrm{RT}}$ alt from R to $\overline{\mathrm{NS}}$

Conch: $\quad \triangle N R T ~ \triangle N S P$

$1 \overline{\mathrm{SP}}$ alt from S to $\overline{\mathrm{NR}}$

1 Given

$2 \overline{\mathrm{RT}}$ alt from R to $\overline{\mathrm{NS}}$
2 Given
$3 \overline{\mathrm{RT}} \perp \overline{\mathrm{NS}}$
$3 a(t \Rightarrow \perp(2)$
$4 \overline{\mathrm{SP}} \perp \overline{\mathrm{NR}}$
$4 a(t \Rightarrow \perp(1)$
$5 \angle \mathrm{RTN}$ rt \angle
$5 \perp \Rightarrow i+L$ (3)
$6 \angle \mathrm{SPN} \mathrm{rt} \angle$
$6 \perp \Rightarrow r+\angle$ (4)
$7 \angle \mathrm{RTN} \cong \angle \mathrm{SPN}$
$7 \mathrm{r}+\mathrm{L} \Rightarrow \stackrel{N}{=} \angle(5,6)$
$8 \angle N \cong \angle N$
8 Reflexive
$9 \quad \triangle \mathrm{NRT} \sim \triangle \mathrm{NSP}$
9 AA ~

22 If two of the six triangles below are selected at random, what is the probability that the two triangles are similar?

8.3: Proving Triangles Similar

$$
2,3,6,8,10,16,19,20
$$

22 See above
20. Slope $\frac{\Delta y}{\Delta x}=-\frac{1}{2}$

(19) a $\triangle P Q T \sim \triangle P R S$?

$$
\angle P \cong \angle P(n \rho)
$$

$$
\begin{aligned}
\frac{P Q}{P T}=\frac{P R}{P S} \rightarrow \frac{4}{6} & =\frac{10}{15} \\
\frac{2}{3} & =\frac{2}{3} \text { yes }
\end{aligned}
$$

SAS ~
b) corr angles congruent $\Rightarrow 11 \therefore Q T|\mid R S$

16 Indicate whether the statement is true Always, Sometimes, or Never (A, S, or N).
a If two triangles are similar, then they are congruent. a) S
b If two triangles are congruent, then they are similar. b) A
c An obtuse triangle is similar to an acute triangle.
d Two right triangles are similar.
d) need α angles, S
e) congruent sides $\Rightarrow S$ (eg rhombus and
e Two equilateral polygons are similar.
f Two equilateral triangles are similar.

$$
\text { ware, angles not }=\text {) }
$$

$$
\begin{aligned}
& \text { g Two rectangles are similar if neither is a square. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { f) } A \\
& \text { S } \\
& x=60 \\
& \frac{x}{x+2}=\frac{2 x}{2 x+4} \text { TRUE }
\end{aligned}
$$

Proofs : Always cony set up

$$
\binom{\text { diagram }}{\text { Given }+ \text { Prove sims }}
$$

Drive Knowledge:

$$
\cong \triangle S \Rightarrow C P C T C
$$

New:
$\sim s) \Rightarrow$ corr seeds proportional $\sim / s) \Rightarrow \operatorname{corr} \angle s \cong$
1.

$$
\begin{array}{r}
G: \angle C \cong \angle F \\
\overline{A B} \perp \overline{B C} \\
\overline{D E} \perp \overline{E F} \\
P: \frac{A B}{B C}=\frac{D E}{\overline{E F}}
\end{array}
$$

s.

1. $\overline{A B} \perp \overline{B C} \& \overline{D E} \perp E F$
R.
2. $\angle A B C \& \angle D E F$ it $\angle S$
A 3. $\angle A B C \cong \angle D E F$
A al. $\angle C \cong \angle F$
3. $\triangle A B C \sim \triangle D E F$
4. $\frac{A B}{B C}=\frac{D E}{E F} \quad 6 . \sim / \Delta \Rightarrow$ corr $s d s$
5. Given
v. $1 \Rightarrow$ RT LS
6. $\operatorname{RT} \angle S \Rightarrow \cong \angle S$
7. GIVEN

POint OUT:
5. AA ~ $(3,4)$ \# ORDER
matters

