Name Adv Geo -

Notes Objectives

After studying this section, you will be able to

- Apply the Exterior Angle Inequality Theorem
- Use various methods to prove lines parallel

Part One: Introduction

The Exterior Angle Inequality Theorem

An exterior angle of a triangle is formed whenever a side of the triangle is extended to form an angle supplementary to the adjacent interior angle.

AMDG Ch 5: Parallel Lines and Related Figures

5.2: Proving that Lines are Parallel

Theorem 30 The measure of an exterior angle of a triangle is greater than the measure of either remote interior angle.

Consider this: Angles of a triangle sum to 180°. Supplementary angles sum to 180°.

In the GSP lab, we observed:

Theorem 31	If two lines are cut by a transversal such that two alternate interior angles are congruent, the lines are parallel. (Short form: Alt. int. $\angle s \cong \Rightarrow \parallel$ lines)
Theorem 32	If two lines are cut by a transversal such that two alternate exterior angles are congruent, the lines are parallel. (Alt. ext. $\angle s \cong \Rightarrow \parallel$ lines.)
Theorem 33	If two lines are cut by a transversal such that two corresponding angles are congruent, the lines are parallel. (Corr. $\angle s \cong \Rightarrow \parallel$ lines)
Theorem 34	If two lines are cut by a transversal such that two interior angles on the same side of the transversal are supplementary, the lines are parallel.
Theorem 35	If two lines are cut by a transversal such that two exterior angles on the same side of the transversal are supplementary, the lines are parallel.
Theorem 36	If two coplanar lines are perpendicular to a third line, they are parallel.

Class Examples

Class Examples				
Problem 1	Prove Theorem 36. $A = 1 - B$			
	Given: $\overrightarrow{AB} \perp \overrightarrow{BD}$ and $\overrightarrow{CD} \perp \overrightarrow{BD}$			
	Prove: $\overrightarrow{AB} \parallel \overrightarrow{CD}$ C 2 D			
Proof	V			
	$1 \overrightarrow{BD} \perp \overrightarrow{AB}$ 1			
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
	$5 \not 1 \cong \not 2$ 5			
	$\overrightarrow{AB} \parallel \overrightarrow{CD} \qquad \qquad 6$			
Problem 2	A parallelogram is a four-sided figure with both pairs of opposite sides parallel.			
	Given: $\angle 1 \cong \angle 2$, QR			
	$\angle PQR \cong \angle RSP$ 1 3			
	Prove: PQRS is a parallelogram.			
D	P			
Proof				
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
	$3 \angle PQR \cong \angle RSP$ 3			
	$\begin{array}{c cccc} 4 & \angle 3 \cong \angle 4 \\ 5 & \overline{QR} \parallel \overline{PS} \\ \end{array} \qquad \qquad$			
	6 PQRS is a parallelogram. 6			
Problem 3	A trapezoid is a four-sided figure with exactly one pair of parallel sides.			
	Given: $\angle 1$ supp. $\angle 3$, $\angle 2 \cong \angle 3$ $\qquad \qquad $			
	Prove: TRAP is a trapezoid.			
	R_{1} A			
	$T \sim P$			
Proof	We can use a flow diagram.			
	$2 \times 1 \text{ supp. } 2 \times 2 \times 3 \times 3 \times 3 \times 5 \times 5 \times 5 \times 5 \times 5 \times 5 \times 5$			
	$1 \qquad \qquad$			
	Reasons (1) Given			

Reasons(1)Given(2)Substitution(3)Int. \angle s on same side supp. \Rightarrow II lines

Name Adv Geo -	AMDG Ch 5: Parallel Lines and Related Figures 5.2: Proving that Lines are Parallel		Ms. Kresovic F 22 Nov 2013
Homework			
16 Solve for x and justify the solve for x and justify the solve for x and justify the solution of the solut		+ 84)° 110°	
19 Given: $\angle D \cong \angle ABE$, $\overline{BE} \not \overline{CD}$ Prove: $\overline{AC} \not\cong \overline{AD}$	A B E D	Either or Assume If sides then angles, so We are given that $\angle D \cong \angle ABE$. By the transitive property	
If corr. \angle s \cong then , so	-		
Consequently the assumption is fa	-	-	
20 Given: $\angle 1 \text{ comp. } \angle 2$, $\angle 3 \text{ comp. } \angle 2$ Prove: $\overline{\text{QT}} \parallel \overline{\text{RS}}$	P Q 1 2 TR 3 S		
Statements	Reasons		
1. $\angle 1 \operatorname{comp} \angle 2 \& \angle 3 \operatorname{comp} \angle 2$	1. Given		
2. $\angle 1 \cong \angle 3$	2.		
3.	3.		

AMDG			
21 Given: \angle MOP is a right angle. M $\overline{RP} \perp \overline{OP}$ $\overline{RP} \perp \overline{PP}$			
Prove: MO RP	0 P		
Statements	Reasons		
1. \angle MOP rt \angle	1. Given		
2. $\overline{RP} \perp \overline{OP}$	2. Given		
3.	3.		
4. \angle MOP supp \angle OPR	4.		
5. $\overline{MO} \mid\mid \overline{RP}$	5.		

26 Find the value(s) of x (to the nearest tenth) that will allow you to prove that m || n. (Hint: You may wish to review the quadratic formula.)

 $(x^{2} + 10)^{\circ}$ m (3x + 17)° n

Quadratic Formula: For any quadratic in standard form, that is $ax^2 + bx + c = 0$, the solutions are $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Name Adv Geo -In Class Work

AMDG Ch 5: Parallel Lines and Related Figures **5.2: Proving that Lines are Parallel**

Ms. Kresovic F 22 Nov 2013

The following exercises need to be handed in before you leave class. You may work alone, with a partner, or in a small group. Please feel free to move desks but return them to their original location before the bell rings. The key for these exercises will be posted by the end of the school day so that you may refer to it when you complete the homework (which will be collected).

I worked with:

12 Given: Prove:		Q Q Q Q Q Q Q Q Q Q
Statements	Reasons	
$\angle 1 \cong \angle 2$		
$\overline{\text{PS}} \parallel \overline{\text{QR}}$		
Prove: A	$\frac{2}{2} FAT \cong \angle HOG \qquad F$ $\overline{T} \parallel \overline{GO} \qquad F$ $: \overline{AB} \cong \overline{CD} \qquad B\overline{C} \cong \overline{AD}$	A G B C
Prove	$: \overline{AB} \parallel \overline{CD}$	A D
$1 \overline{\text{AB}}$	i ≅ <u>CD</u>	1
$2 \overline{BC}$	$\Xi \cong \overline{\mathrm{AD}}$	2
3 BD	i ≅ BD	3
4 ∆B	AD ≅ △DCB	4
5 ∠A	BD≅∠BDC	5
6 AE	$\overline{\mathbf{S}} \parallel \overline{\mathbf{CD}}$	6

AMDG

17 Write a valid inequality and find the restrictions on x.

23 If $\overrightarrow{PQ} \not \downarrow \overrightarrow{RS}$, can x be 25? Explain.

(3x - 18)°

In a problem like this, include reasons (even though it's not a proof).

Remember that geometry is about "explaining why something is true".

30°

Either PQ || RS or PQ is not || RS. Assume PQ || RS. || \Rightarrow int. \angle s same side supp, so \angle QBC supp \angle SCA. We know that vertical angles are congruent so \angle SCA $\cong \angle$ DCR.

Hence, 2x + 4x+30 = 180. (You need to finish this problem.)