Notes

Objectives

After studying this section, you will be able to

- Apply the Exterior Angle Inequality Theorem
- Use various methods to prove lines parallel

Part One: Introduction

The Exterior Angle Inequality Theorem

An exterior angle of a triangle is formed whenever a side of the triangle is extended to form an angle supplementary to the adjacent interior angle.

Theorem 30 The measure of an exterior angle of a triangle is greater than the measure of either remote interior angle.
Consider this: Angles of a triangle sum to 180°. Supplementary angles sum to 180°.

In the GSP lab, we observed:
$\begin{aligned} \text { Theorem } 31 & \begin{array}{l}\text { If two lines are cut by a transversal such that two } \\ \text { alternate interior angles are congruent, the lines }\end{array}\end{aligned}$

Theorem 32 If two lines are cut by a transversal such that two alternate exterior angles are congruent, the lines are parallel. (Alt. ext. $\angle s \cong \Rightarrow \|$ lines.)

Theorem 33 If two lines are cut by a transversal such that two corresponding angles are congruent, the lines are parallel. (Corr. $\angle s \cong \Rightarrow \|$ lines)

Theorem 34 If two lines are cut by a transversal such that two interior angles on the same side of the transversal are supplementary, the lines are parallel.

Theorem 35 If two lines are cut by a transversal such that two exterior angles on the same side of the transversal are supplementary, the lines are parallel.

Theorem 36 If two coplanar lines are perpendicular to a third line, they are parallel.

Class Examples

Problem 1 Prove Theorem 36.
Given: $\overleftrightarrow{A B} \perp \overleftrightarrow{\leftrightarrow} \overleftrightarrow{\leftrightarrow D}$ and $\overleftrightarrow{\mathrm{CD}} \perp \overleftrightarrow{\mathrm{BD}}$
Prove: $\overleftrightarrow{A B} \| \overleftrightarrow{\mathrm{CD}}$

Proof

$1 \overleftrightarrow{\mathrm{BD}} \perp \overleftrightarrow{\mathrm{AB}}$	1	
$2 \angle 1$ is a right \angle.	2	
$3 \overleftrightarrow{\mathrm{BD}} \perp \overleftrightarrow{\mathrm{CD}}$	3	
$4 \angle 2$ is a right \angle.	4	
$5 \angle 1 \cong \angle 2$	5	
$6 \overleftrightarrow{A B} \\| \overleftrightarrow{C D}$	6	

Problem 2 A parallelogram is a four-sided figure with both pairs of opposite sides parallel.

Given: $\angle 1 \cong \angle 2$, $\angle \mathrm{PQR} \cong \angle \mathrm{RSP}$
Prove: PQRS is a parallelogram.

Proof

$1 \angle 1 \cong \angle 2$	1	
$2 \angle \mathrm{PQ} \\| \mathrm{RS}$	2	
$3 \angle \mathrm{PQR} \cong \angle \mathrm{RSP}$	3	
$4 \angle 3 \cong \angle 4$	4	
$5 \angle \mathrm{QR} \\| \overline{\mathrm{PS}}$	5	
6 PQRS is a parallelogram.	6	

Problem 3 A trapezoid is a four-sided figure with exactly one pair of parallel sides.
Given: $\angle 1$ supp. $\angle 3$,

$$
\angle 2 \cong \angle 3
$$

Prove: TRAP is a trapezoid.

Proof We can use a flow diagram.

Ms. Kresovic
Adv Geo -
5.2: Proving that Lines are Parallel

F 22 Nov 2013

Homework

16 Solve for x and justify that $\mathrm{m} \| \mathrm{n}$.

19 Given: $\angle \mathrm{D} \cong \angle \mathrm{ABE}$, $\overline{\mathrm{BE}} X \overline{\mathrm{CD}}$
Prove: $\overline{\mathrm{AC}} \not \equiv \overline{\mathrm{AD}}$

Either \qquad or \qquad
Assume \qquad _.

If sides then angles, so \qquad .

We are given that $\angle \mathrm{D} \cong \angle \mathrm{ABE}$.
D By the transitive property \qquad -
If corr. $\angle \mathrm{s} \cong$ then $\|$, so \qquad . But this is impossible as it contradicts the given information \qquad .

Consequently the assumption is false and \qquad is the only possibility. QED

20 Given: $\angle 1$ comp. $\angle 2$, $\angle 3$ comp. $\angle 2$
Prove: $\overline{\mathrm{QT}} \| \overline{\mathrm{RS}}$

Statements	Reasons
1. $\angle 1$ comp $\angle 2 \& \angle 3$ comp $\angle 2$	1. Given
2. $\angle 1 \cong \angle 3$	2.
3.	3.

21 Given: $\angle \mathrm{MOP}$ is a right angle.

$$
\overline{\mathrm{RP}} \perp \overline{\mathrm{OP}}
$$

Prove: $\overline{\mathrm{MO}} \| \overline{\mathrm{RP}}$

Statements	Reasons	
1. $\angle \mathrm{MOPrt} \angle$	1. Given	
2. $\overline{R P} \perp \overline{O P}$	2. Given	
3.	3.	
4. $\angle \mathrm{MOP}$ supp $\angle \mathrm{OPR}$	4.	
5. $\overline{M O} \\| \overline{R P}$	5.	

26 Find the value(s) of x (to the nearest tenth) that will allow you to prove that $\mathrm{m} \| \mathrm{n}$. (Hint: You may wish to review the quadratic formula.)

Quadratic Formula: For any quadratic in standard form, that is $\mathrm{ax} x^{2}+\mathrm{b} x+\mathrm{c}=0$, the solutions are $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

In Class Work

The following exercises need to be handed in before you leave class. You may work alone, with a partner, or in a small group. Please feel free to move desks but return them to their original location before the bell rings. The key for these exercises will be posted by the end of the school day so that you may refer to it when you complete the homework (which will be collected).

I worked with:

12 Given: $\odot 0$,
$\angle 1 \cong \angle 2$
Prove: $\overline{\mathrm{PS}} \| \overline{\mathrm{QR}}$

Statements	Reasons	
$\angle 1 \cong \angle 2$		
$\overline{\mathrm{PS}} \\| \overline{\mathrm{QR}}$		

13 Given: $\angle \mathrm{FAT} \cong \angle \mathrm{HOG}$ Prove: $\overline{\mathrm{AT}} \| \overline{\mathrm{GO}}$

14 Given: $\overline{\mathrm{AB}} \cong \overline{\mathrm{CD}}$

$$
\overline{\mathrm{BC}} \cong \overline{\mathrm{AD}}
$$

Prove: $\quad \overline{\mathrm{AB}} \| \overline{\mathrm{CD}}$
$1 \overline{\mathrm{AB}} \cong \overline{\mathrm{CD}}$
$2 \overline{\mathrm{BC}} \cong \overline{\mathrm{AD}}$
$3 \overline{\mathrm{BD}} \cong \overline{\mathrm{BD}}$
3
$4 \triangle \mathrm{BAD} \cong \triangle \mathrm{DCB}$
4
$5 \angle \mathrm{ABD} \cong \angle \mathrm{BDC}$
5
$6 \overline{\mathrm{AB}} \| \overline{\mathrm{CD}}$

17 Write a valid inequality and find the restrictions on x.

23 If $\overleftrightarrow{P Q} \nVdash \overleftrightarrow{R S}$, can x be 25? Explain.

in a problem like this, include reasons (even though it's not a proof).
Remember that geometry is about "explaining why something is true".
Either $\mathrm{PQ}|\mid \mathrm{RS}$ or PQ is not || RS. Assume PQ$| \mid \mathrm{RS}$. || \Rightarrow int. \angle s same side supp, so $\angle \mathrm{QBC}$ supp $\angle \mathrm{SCA}$.
We know that vertical angles are congruent so $\angle \mathrm{SCA} \cong \angle \mathrm{DCR}$.
Hence, $2 \mathrm{x}+4 \mathrm{x}+30=180$. (You need to finish this problem.)

