Notes

Objective

After studying this section, you will be able to

- Write indirect proofs

An indirect proof may be useful in a problem where a direct proof would be difficult to apply. Study the following example of an indirect proof.
Example

Given: $\angle \mathrm{A} \cong \angle \mathrm{D}, \overline{\mathrm{AB}} \cong \overline{\mathrm{DE}}, \overline{\mathrm{AC}} \not \equiv \overline{\mathrm{DF}}$
Prove: $\angle \mathrm{B} \not \equiv \angle \mathrm{E}$
Proof: Either $\angle \mathrm{B} \cong \angle \mathrm{E}$ or $\angle \mathrm{B} \not \equiv \angle \mathrm{E}$.
Assume $\angle \mathrm{B} \cong \angle \mathrm{E}$.
From the given information, $\angle \mathrm{A} \cong \angle \mathrm{D}$ and $\overline{\mathrm{AB}} \cong \overline{\mathrm{DE}}$.
Thus, $\triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}$ by ASA.
$\therefore \overline{\mathrm{AC}} \cong \overline{\mathrm{DF}}$
But this is impossible, since $\overline{\mathrm{AC}} \not \equiv \overline{\mathrm{DF}}$ is given.
Thus, our assumption was false and $\angle B \not \equiv \angle \mathrm{E}$, because this is the only other possibility.

The following procedure will help you to write indirect proofs.

Indirect-Proof Procedure

1 List the possibilities for the conclusion.
(2) Assume that the negation of the desired conclusion is correct. OPDOS, TE

3 Write a chain of reasons until you reach an impossibility.
This will be a contradiction of either
(a) given information or
\checkmark (b) a theorem, definition, or other known fact.
4 State the remaining possibility as the desired conclusion.

Class Examples
Note Remember to start by looking at the conclusion.

Problem 1 Given: $\overline{\mathrm{RS}} \perp \overline{\mathrm{PQ}}$,
Prove: $\overrightarrow{R S}$ does not bisect $\angle \mathrm{PRQ}$.

Either $\overrightarrow{R S}$ bis $\angle P R Q$ or $\overrightarrow{R S}$ does not bis $\angle P R Q$
Assume $\overrightarrow{R S}$ biSLPRQ
Then we can say that If a ray bis \angle then the nay \div s
the \angle into $2 \cong \angle S: \angle S R P \cong \angle S R Q$. By Ref $S R \cong=5 R$. It's given $\overline{R S}+\overline{P Q}$, If 1 then ret $\angle: \angle R S Q \& \angle R S P N A \angle S$
If ret s then $\cong \angle S: \angle R S Q \cong \angle R S P . B y A S A, \triangle P S R \cong \triangle Q S R$.
$B Y \subset P C T C, P R \cong \overline{Q R}$.
But this is impossible because it contradicts the given fact that $\overline{\mathrm{PR}} \not \equiv \overline{\mathrm{QR}}$. Consequently, the assumption must be false. $\therefore \overrightarrow{\mathrm{RS}}$ does not bisect $\angle \mathrm{PRQ}$, the only other possibility.

Problem 2 Given: $\odot \mathrm{O}, \overline{\mathrm{AB}} \not \equiv \overline{\mathrm{BC}}$
Prove: $\angle \mathrm{AOB} \not \equiv \angle \mathrm{COB}$

A
$E_{\text {TIer }} \angle A O B^{2}=\angle C O B$ or $\angle A O B$ 伴 $\angle C O B$.
Assume $\angle A O B=\angle C O B$.

We are given $\odot 0$. If \odot then \cong radii: $\overline{O A} \cong \overline{O C}$.
s Proof If \triangle then $\triangle \triangle: \angle A \cong \angle C$.

$$
\text { By ASA } \quad \triangle A O B=\triangle C O B
$$

The following exercises need to be handed in before you leave class. You may work alone, with a partner, or in a small group. Please feel free to move desks but return them to their original location before the bell rings. The key for these exercises will be posted by the end of the school day so that you may refer to it when you complete the homework (which will be collected).

I worked with:

1 Given: $\overline{\mathrm{AB}} \cong \overline{\mathrm{AD}}, \angle \mathrm{BAC} \equiv \angle \mathrm{DAC}$
Prove: $\overline{\mathrm{BC}} \not \equiv \overline{\mathrm{DC}}$

Proof:
Either \qquad or \qquad .

Assume \qquad .

We are given that $\overline{A B} \cong \overline{A D}$.
By the Reflexive Property \qquad .

Then by SSS, \qquad and by CPCTC \qquad .

But this is impossible as it contradicts the given information $\angle \mathrm{BAC} \not \equiv \angle \mathrm{DAC}$.
Consequently the assumption is false and \qquad is the only possibility. QED

2 Given: P is not the midpoint of $\overline{\mathrm{HK}}$. $\overline{\mathrm{HJ}} \cong \overline{\mathrm{K}}$
Prove: $\overrightarrow{\mathrm{PP}}$ does not bisect $\angle \mathrm{HJK}$.

4 Given: $\angle \mathrm{H} \not \equiv \angle \mathrm{K}$ Prove: $\overline{\mathrm{JH}} \not \equiv \overline{\mathrm{JK}}$

7 RECT is a rectangle.
a In terms of a and b, find the coordinates of C.
b Does $\overline{\mathrm{RC}}$ appear to be congruent to $\overline{\mathrm{ET}}$?

*Regardless of format - two column or paragraph - proof is supporting a specific case with a trustworthy generalization (or axiom from our ASN).

10 Given: $\overline{\mathrm{PA}} \perp \overline{\mathrm{AB}}$,
$\overline{\mathrm{PA}} \perp \overline{\mathrm{AC}}$,
$\angle B \not \equiv \angle C$
Prove: $\overline{\mathrm{AB}} \not \equiv \overline{\mathrm{AC}}$

Either \qquad or \qquad Assume \qquad .

We are given $\overline{\mathrm{PA}} \perp \overline{\mathrm{AB}}$ and $\overline{\mathrm{PA}} \perp \overline{\mathrm{AC}}$.
If two segments are perpendicular then they form right angles, thus \qquad .
All right angles are congruent, so \qquad .

Any segment is congruent to itself (aka the Reflexive Property), so \qquad .

Hence, \qquad by SAS.
Then by CPTPC, \qquad .

But this is impossible as it contradicts the given information \qquad
Consequently the assumption is false and \qquad is the only possibility. QED

Name
Adv Geo -

Homework

3 Given: $\overline{\mathrm{AC}} \perp \overline{\mathrm{BD}}$, $\overline{\overline{\mathrm{BC}}} \cong \overline{\mathrm{EC}}$,

Prove: $\angle \mathrm{B} \not \equiv \angle \mathrm{CED}$

Either \qquad or \qquad -.

Assume \qquad -.

We are given $\overline{\mathrm{BC}} \cong \overline{\mathrm{FC}} . \& \mathrm{AC} \perp \overline{\mathrm{BD}}$.
If two segments are perpendicular then they form right angles, thus \qquad .

Hence, \qquad by HL.

Then by CPTPC, \qquad .

But this is impossible as it contradicts the given information
Consequently the assumption is false and \qquad is the only possibility. QED

5 Given: \odot O;
$\xrightarrow{\mathrm{OB}}$ is not an altitude.
Prove: $\overrightarrow{\mathrm{OB}}$ does not bisect $\angle \mathrm{AOC}$.

6 ODEF is a square.
In terms of a, find
a The coordinates of points E and F

b The area of the square
d The midpoint of $\overline{\mathrm{OE}}$

9 Identify each of the following pairs of angles as alternate interior, alternate exterior, or corresponding.
a For $\overleftrightarrow{\mathrm{BE}}$ and $\overleftrightarrow{C D}$ with transversal $\overleftrightarrow{B C}, \angle 1$ and $\angle \mathrm{C}$

b For $\overleftrightarrow{\mathrm{AE}}$ and $\overleftrightarrow{\mathrm{BD}}$ with transversal $\overleftrightarrow{\mathrm{BE}}, \angle 2$ and $\angle 4$

12 Given: $\odot \mathrm{O} ; \overline{\mathrm{HE}}$ is not the perpendicular bisector of $\overline{\mathrm{DF}}$.
Prove: $\overline{\mathrm{DE}} \not \equiv \overline{\mathrm{EF}}$

