Adv Geo -

AMDG Ch 5: Parallel Lines and Related Figures 5.1: Indirect Proof

Ms. Kresovic

Notes

Objective

After studying this section, you will be able to

Write indirect proofs

An indirect proof may be useful in a problem where a direct proof would be difficult to apply. Study the following example of an indirect proof.

Example

Given: $\angle A \cong \angle D$, $\overline{AB} \cong \overline{DE}$, $\overline{AC} \not\cong \overline{DF}$

Prove: ∠B ≇ ∠E

Proof: Either $\angle B \cong \angle E$ or $\angle B \not\cong \angle E$.

Assume $\angle B \cong \angle E$.

From the given information, $\angle A \cong \angle D$ and $\overline{AB} \cong \overline{DE}$.

Thus, $\triangle ABC \cong \triangle DEF$ by ASA.

 $\therefore \overline{AC} \cong \overline{DF}$

But this is impossible, since $\overline{AC} \not\cong \overline{DF}$ is given.

Thus, our assumption was false and $\angle B \not\cong \angle E$, because this is the only other possibility.

The following procedure will help you to write indirect proofs.

Indirect-Proof Procedure

1 List the possibilities for the conclusion.

(2) Assume that the negation of the desired conclusion is correct. OPPOSITE

3 Write a chain of reasons until you reach an impossibility. This will be a contradiction of either

(a) given information or

(b) a theorem, definition, or other known fact.

4 State the remaining possibility as the desired conclusion.

Class Examples

Note Remember to start by looking at the conclusion.

Problem 1

Given: $\overline{RS} \perp \overline{PQ}$,

 $\overline{PR} \not\cong \overline{QR}$

Prove: \overrightarrow{RS} does not bisect $\angle PRQ$.

Either R'S Lis LPRQ or R'S does not bis LPRQ

Assume RS bisLDRQ

Then we can say that If a ray bis & then the nay = s

The L wto 2 = LS: LSRP = LSRO. By Ref SRESR.

Its given RS + PQ. If I then ret L: LRSQ & LRSPATLS.

If ret 2s then = LS: LRSQ = LRSP. By ASA, APSR = AC

By CPCTC, PR SQR,
But this is impossible because it contradicts the given fact that $\overline{PR} \not\equiv \overline{QR}$. Consequently, the assumption must be false. $\therefore \overrightarrow{RS}$ does not bisect ∠PRQ, the only other possibility.

Given: \bigcirc O, $\overline{AB} \not\cong \overline{BC}$ Problem 2

Prove: ∠AOB ≇ ∠COB

EITHER LAOB = LCOB . RLADB \$ LCOB.

Assume LAOBELCOB.

Proof If & then & LA & LC.
By ASA DAOB = 2000

Name Adv Geo - Ch 5: Parallel Lines and Related Figures 5.1: Indirect Proof

Date:

Ms. Kresovic

In Class Work due

The following exercises need to be handed in before you leave class. You may work alone, with a partner, or in a small group. Please feel free to move desks but return them to their original location before the bell rings. The key for these exercises will be posted by the end of the school day so that you may refer to it when you complete the homework (which will be collected).

I worked with:

1 Given: $\overline{AB} \cong \overline{AD}$, $\angle BAC \not\cong \angle DAC$

Prove: $\overline{BC} \not\cong \overline{DC}$

Proof:

Either ______ or _____.

We are given that $\overline{AB} \cong \overline{AD}$.

By the Reflexive Property ______.

Then by SSS, _____ _____, and by CPCTC ______.

But this is impossible as it contradicts the given information $\angle BAC \not\cong \angle DAC$.

Consequently the assumption is false and ______ is the only possibility. *OED*

2 Given: P is not the midpoint of \overline{HK} .

 $\overline{HJ} \cong \overline{JK}$

Prove: IP does not bisect ∠HJK.

4 Given: $\angle H \not\equiv \angle K$ Prove: JH ≠ JK

7 RECT is a rectangle.

- a In terms of a and b, find the coordinates of C.
- **b** Does RC appear to be congruent to \overline{ET} ?

*Regardless of format – two column or paragraph – proof is supporting a specific case with a trustworthy generalization (or axiom from our ASN).

10 Given: $\overline{PA} \perp \overline{AB}$,

 $\overline{PA} \perp \overline{AC}$.

 $\angle B \ncong \angle C$

Prove: $\overline{AB} \not\cong \overline{AC}$

Either ______ or _____. Assume _____

We are given $\overline{PA} \perp \overline{AB}$ and $\overline{PA} \perp \overline{AC}$.

If two segments are perpendicular then they form right angles, thus ______.

All right angles are congruent, so ______

Any segment is congruent to itself (aka the Reflexive Property), so ______.

Hence, _____

Then by CPTPC, _____

But this is impossible as it contradicts the given information _____

Consequently the assumption is false and ______ is the only possibility. QED

AMDG

Name Adv Geo -

Ch 5: Parallel Lines and Related Figures 5.1: Indirect Proof

Date:

Ms. Kresovic

Homework

3 Given: $\overline{AC} \perp \overline{BD}$, $\overline{BC} \cong \overline{EC}$, $\overline{AB} \ncong \overline{ED}$ Prove: $\angle B \ncong \angle CED$

Either _____ or _____.

Assume ______.

We are given $\overline{BC}\cong \overline{EC}$ & $AC\perp \overline{BD}$.

If two segments are perpendicular then they form right angles, thus _______.

Hence, _____ by HL.

Then by CPTPC, _______.

But this is impossible as it contradicts the given information _____

5 Given: ⊙O;

OB is not an altitude.

Prove: \overrightarrow{OB} does not bisect $\angle AOC$.

AMDG

- 6 ODEF is a square. In terms of a, find
 - a The coordinates of points E and F

b The area of the square

 ${\mathfrak e}$ The midpoint of \overline{FD}

d The midpoint of OE

- **9** Identify each of the following pairs of angles as alternate interior, alternate exterior, or corresponding.
 - a For \overrightarrow{BE} and \overrightarrow{CD} with transversal $\overrightarrow{BC},$ $\angle 1$ and $\angle C$

- **b** For \overrightarrow{AE} and \overrightarrow{BD} with transversal \overrightarrow{BE} , $\angle 2$ and $\angle 4$
- 12 Given: ⊙O; HE is not the perpendicular

bisector of $\overline{\rm DF}$.

Prove: $\overline{\text{DE}} \not\cong \overline{\text{EF}}$

