\qquad

Coordinate Proof: Let (a, b) be the coordinates of P and (c, d) be the coordinates of Q . In showing that M with coordinates $\left(\frac{a+c}{2}, \frac{b+d}{2}\right)$ is the midpoint of PQ , we have to show that (1) $\mathrm{PM}=\mathrm{MQ}$, and (2) M is on PQ . (Why?)

(a, b)
For (1), we show that the distance of PM is equal to the distance of MQ (using the Pythagorean Theorem).

Distance of PM:
$|P M|=\sqrt{\left(\frac{a+c}{2}-a\right)^{2}+\left(\frac{b+d}{2}-b\right)^{2}}$
$|P M|=\sqrt{\left(\frac{a+c-2 a}{2}\right)^{2}+\left(\frac{b+d-2 b}{2}\right)^{2}}$
$|P M|=\sqrt{\left(\frac{c-a}{2}\right)^{2}+\left(\frac{d-b}{2}\right)^{2}}$

Distance of MQ:
$|M Q|=\sqrt{\left(c-\frac{a+c}{2}\right)^{2}+\left(d-\frac{b+d}{2}\right)^{2}}$
$|M Q|=\sqrt{\left(\frac{2 c-a-c}{2}\right)^{2}+\left(\frac{2 d-b-d}{2}\right)^{2}}$
$|M Q|=\sqrt{\left(\frac{c-a}{2}\right)^{2}+\left(\frac{d-b}{2}\right)^{2}}$

Hence, $\mathrm{PM}=\mathrm{MQ}$. If two segments have the same measure, then they are congruent. Therefore, $\overline{\mathrm{PM}} \cong \overline{\mathrm{MQ}}$
For (2), we have to show that the slope of PM is equal to the slope of MQ .
Slope of PM:

$$
\frac{\frac{b+d}{2}-b}{\frac{a+c}{2}-a}=\frac{\frac{b+d-2 b}{2}}{\frac{a+c-2 a}{2}}=\frac{d-b}{c-a}
$$

Slope of MQ:

$$
\frac{d-\frac{b+d}{2}}{c-\frac{a+c}{2}}=\frac{\frac{2 d-b-d}{2}}{\frac{2 c-a-c}{2}}=\frac{d-b}{c-a}
$$

Since $\mathrm{m}(\mathrm{PQ})=\mathrm{m}(\mathrm{MQ})$ and $\overline{\mathrm{PM}} \cong \overline{\mathrm{MQ}}$, we may conclude that M is the midpoint of $\mathrm{PQ} \cdot \mathrm{QED}$

| 4.3 | Theorem 23 If two angles are both supplementary and congru- |
| :--- | :--- | :--- | ent, then they are right angles.

Given: $\angle 1 \cong \angle 2$
Prove: $\angle 1$ and $\angle 2$ are right angles.

Two-column proof:

Statements		Reasons	
1. $\quad \angle \mathrm{l} \cong \angle 2$	1.	Given	
2. $\mathrm{m} \angle \mathrm{l}=\mathrm{m} \angle 2$	2. If two angles are congruent, then they have the same measure.		
3. $\angle \mathrm{l}$ is supplementary to $\angle 2$	3. If two angles form a straight angle, then they are supplementary angles.		
4. $\mathrm{m} \angle \mathrm{l}+\mathrm{m} \angle 2=180^{\circ}$	4. If two angles are supplementary, then they sum to 180°.		
5. $\mathrm{m} \angle \mathrm{l}+\mathrm{m} \angle \mathrm{l}=180^{\circ}$	5. Substitution		
$6 . \quad \mathrm{m} \angle \mathrm{l}=90^{\circ}$	6.	Division	
7. $\angle \mathrm{l} \& \angle 2$ are right angles	7. If an angles measure is 90°, then it is a right angle.		

Paragraph proof:
Since $\angle 1$ and $\angle 2$ form a straight angle (line p), they are
supplementary. Therefore, $\mathrm{m} \angle 1+\mathrm{m} \angle 2=180$. Since $\angle 1 \cong$
$\angle 2$, we can use substitution to get the equation $\mathrm{m} \angle 1+\mathrm{m} \angle 1$
$=180$, or $\mathrm{m} \angle 1=90$. Thus, $\angle 1$ is a right angle, and so is $\angle 2$.

Adv Geo period \qquad

4.4	Definition The distance between two objects is the length of the shortest path joining them.	
	The distance between points R and S is the \qquad length of $\overline{\mathrm{RS}}$, or RS.	
	that bisects and is perpendicular to the segment.	
	Theorem 24 If two points are each points of a segment, the the perpendicular bise Given: $\overline{\mathrm{AB}} \cong \overline{\mathrm{AD}}, \overline{\mathrm{BC}} \cong$ Prove: $\overleftrightarrow{A C}$ is the \perp bise Proof $\begin{aligned} & 1 \overline{\mathrm{AB}} \cong \overline{\mathrm{AD}} \\ & 2 \overline{\mathrm{BC}} \cong \overline{\mathrm{CD}} \\ & \text { DETOUR }\left[\begin{array}{ll} 3 & \overline{\mathrm{AC}} \cong \overline{\mathrm{AC}} \\ 4 & \triangle \mathrm{ABC} \cong \triangle \mathrm{ADC} \\ 5 & \angle \mathrm{BAC} \cong \angle \mathrm{DAC} \\ 6 & \overline{\mathrm{AE}} \cong \overline{\mathrm{AE}} \\ 7 & \triangle \mathrm{ABE} \cong \triangle \mathrm{ADE} \\ 8 & \overline{\mathrm{BE}} \cong \overline{\mathrm{ED}} \\ 9 & \overleftrightarrow{\mathrm{AC}} \text { bisects } \overline{\mathrm{BD}} . \\ 10 & \angle \mathrm{AEB} \cong \angle \mathrm{AED} \\ 11 & \angle \mathrm{AED} \text { and } \angle \mathrm{AEB} \\ & \text { are right } \angle \mathrm{s} . \\ 12 & \overleftrightarrow{\mathrm{AC}} \perp \stackrel{\mathrm{BD}}{\leftrightarrows} \end{array}\right. \end{aligned}$ $13 \overleftrightarrow{\mathrm{AC}}$ is the \perp bisector of $\overline{\mathrm{BD}}$.	idistant from the endthe two points determine of that segment. \bar{D} of $\overline{\mathrm{BD}}$. 1 Given 2 Given 3 Reflexive Property 4 SSS (1, 2, 3) 5 CPCTC 6 Reflexive Property 7 SAS $(1,5,6)$ 8 CPCTC 9 If a line divides a segment into two \cong segments, it bisects the segment. 10 CPCTC (step 7) 11 If two \angle s are both supp. and \cong, then they are right $\angle \mathrm{s}$. 12 If two lines intersect to form right $\angle \mathrm{s}$, they are \perp. 13 Combination of steps 9 and 12

Theorem 25 If a point is on the perpendicular bisector of a segment, then it is equidistant from the endpoints of that segment.

Given: $\overleftrightarrow{\mathrm{PQ}}$ is the \perp bisector of $\overline{\mathrm{AB}}$.
Prove: $\overline{\mathrm{PA}} \cong \overline{\mathrm{PB}}$

Statements	Reasons
1. $\overline{\mathrm{PQ}} \perp$ bis $\overline{\mathrm{AB}}$	1. Given
2. $\overline{\mathrm{AQ}} \cong \overline{\mathrm{QB}}$	2. If a segment bisects a segment, then it divides the segment into two congruent segments. (1)
3. $\angle 1 \otimes \angle 2$ are right angles	3. If two segments are perpendicular, then they form right angles. (1)
4. $\angle \mathrm{l} \cong \angle 2$	4. All right angles are congruent. (2)
5. $\overline{\mathrm{PQ}} \cong \overline{\mathrm{PQ}}$	5. Any segment is congruent to itself; the Reflexive Property.
6. $\triangle \mathrm{PAQ} \cong \triangle \mathrm{PBQ}$	6. SAS $(2,4,5)$
7. $\overline{\mathrm{PA}} \cong \overline{\mathrm{PB}}$	7. Corresponding parts of congruent triangles are congruent; CPCTC. (6)

4.6	Definition	The slope m of a nonvertical line, segment, or ray containing $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is defined by the formula $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ or $m=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}$ or $m=\frac{\Delta y}{\Delta x}$

Note In more-advanced mathematics classes, it is common to use Δy (read "delta y ") instead of $y_{2}-y_{1}$ and Δx ("delta x ") instead of $x_{2}-x_{1}$. The symbol Δ is used to indicate change, so that Δy, for example, means "the change in y-coordinates between two points."

Do not confuse no slope with a slope of zero. On a horizontal line, $y_{2}=y_{1}$, but $x_{2} \neq x_{1}$. Therefore, the numerator is zero, while the denominator is not. Hence, a horizontal line has zero slope.

Visual Interpretation of Slope

The numerical value of a slope gives us a clue to the direction a line is taking. The following diagrams illustrate this notion.

In summary,

- Rising line \Leftrightarrow positive slope
- Horizontal line \Leftrightarrow zero slope
- Falling line \Leftrightarrow negative slope
- Vertical line \Leftrightarrow no slope
\qquad

	Slopes of Parallel and Perpendicular Lines The proofs of the following four theorems require a knowledge of the properties of similar triangles and will be omitted here. Theorem 26 If two nonvertical lines are parallel, then their slopes are equal. Given: $\overleftrightarrow{\mathrm{AB}} \\| \overleftrightarrow{\mathrm{CD}}$ Prove: Slope $\overleftrightarrow{A B}=$ slope $\overleftrightarrow{C D}$
	Theorem 27 If the slopes of two nonvertical lines are equal, then the lines are parallel. $\mathrm{mAB}=\mathrm{mCD}$
	Theorem 28 If two lines are perpendicular and neither is vertical, each line's slope is the opposite reciprocal of the other's. $(\mathrm{mAB})(\mathrm{mCD})=-1$
	Theorem 29 If a line's slope is the opposite reciprocal of another line's slope, the two lines are perpendicular.

You will not hand in this ASN for points. However you are required to know \& apply the axioms.

